期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
1
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Traffic prediction enabled dynamic access points switching for energy saving in dense networks 被引量:1
2
作者 Yuchao Zhu Shaowei Wang 《Digital Communications and Networks》 SCIE CSCD 2023年第4期1023-1031,共9页
To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by depl... To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network. 展开更多
关键词 Access points switching on/off ENERGY-SAVING Green network Long short-term memory traffic prediction
下载PDF
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
3
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
4
作者 Zhong-Yu Li Hong-Xia Ge Rong-Jun Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
下载PDF
Short-time prediction for traffic flow based on wavelet de-noising and LSTM model 被引量:3
5
作者 WANG Qingrong LI Tongwei ZHU Changfeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期195-207,共13页
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina... Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient. 展开更多
关键词 short-term traffic flow prediction deep learning wavelet denoising network matrix compression long short term memory(LSTM)network
下载PDF
Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier
6
作者 M.Govindarajan V.Chandrasekaran S.Anitha 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期851-863,共13页
Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.... Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.Given the increasing dense population of data,traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation.A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning(RKLSTM-CTMDSL)model is introduced for traffic prediction with superior accuracy and minimal time consumption.The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction.In this model,the connectionist Tversky multilayer deep structure learning includes multiple layers for traffic prediction.A large volume of spatial-temporal data are considered as an input-to-input layer.Thereafter,input data are transmitted to hidden layer 1,where a radial kernelized long short-term memory architecture is designed for the relevant attribute selection using activation function results.After obtaining the relevant attributes,the selected attributes are given to the next layer.Tversky index function is used in this layer to compute similarities among the training and testing traffic patterns.Tversky similarity index outcomes are given to the output layer.Similarity value is used as basis to classify data as heavy network or normal traffic.Thus,cellular network traffic prediction is presented with minimal error rate using the RKLSTM-CTMDSL model.Comparative evaluation proved that the RKLSTM-CTMDSL model outperforms conventional methods. 展开更多
关键词 Cellular network traffic prediction connectionist Tversky multilayer deep structure learning attribute selection classification radial kernelized long short-term memory
下载PDF
AUTOSIM:Automated Urban Traffic Operation Simulation via Meta-Learning 被引量:2
7
作者 Yuanqi Qin Wen Hua +5 位作者 Junchen Jin Jun Ge Xingyuan Dai Lingxi Li Xiao Wang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1871-1881,共11页
Online traffic simulation that feeds from online information to simulate vehicle movement in real-time has recently seen substantial advancement in the development of intelligent transportation systems and urban traff... Online traffic simulation that feeds from online information to simulate vehicle movement in real-time has recently seen substantial advancement in the development of intelligent transportation systems and urban traffic management.It has been a challenging problem due to three aspects:1)The diversity of traffic patterns due to heterogeneous layouts of urban intersections;2)The nature of complex spatiotemporal correlations;3)The requirement of dynamically adjusting the parameters of traffic models in a real-time system.To cater to these challenges,this paper proposes an online traffic simulation framework called automated urban traffic operation simulation via meta-learning(AUTOSIM).In particular,simulation models with various intersection layouts are automatically generated using an open-source simulation tool based on static traffic geometry attributes.Through a meta-learning technique,AUTOSIM enables an automated learning process for dynamic model settings of traffic scenarios featured with different spatiotemporal correlations.Besides,AUTOSIM is capable of adapting traffic model parameters according to dynamic traffic information in real-time by using a meta-learner.Through computational experiments,we demonstrate the effectiveness of the meta-learningbased framework that is capable of providing reliable supports to real-time traffic simulation and dynamic traffic operations. 展开更多
关键词 conditional generative adversarial network signalized urban networks short-term link speed prediction
下载PDF
A Light Weight Traffic Volume Prediction Approach Based on Finite Traffic Volume Data
8
作者 Xing Su Minghui Fan +2 位作者 Zhi Cai Qing Liu Xiaojun Zhang 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2023年第5期603-622,共20页
As one of the key technologies of intelligent transportation systems, short-term traffic volume prediction plays an increasingly important role in solving urban traffic problems. In the last decade, many approaches we... As one of the key technologies of intelligent transportation systems, short-term traffic volume prediction plays an increasingly important role in solving urban traffic problems. In the last decade, many approaches were proposed for the traffic volume prediction from different perspectives. However, most of these approaches are based on a large amount of historical data. When there are only finite collected traffic data, they cannot be well trained, so the prediction accuracy of these approaches will be poor. In this paper, a tensor model is proposed to capture the change patterns of continuous traffic volumes. From collected traffic volume data, the element data are extracted to update the corresponding elements of the tensor model. Then, a tucker decomposition and gradient descent based algorithm is employed to impute the missing elements of the tensor model. After missing element imputation, the tensor model can be directly applied to the short-term traffic volume prediction through searching the corresponding elements of the model and the storage cost of the model is low. Our model is evaluated on real traffic volume data from PeMS dataset, which indicates that our model has higher traffic volume prediction accuracy than other approaches in the situation of finite traffic volume data. 展开更多
关键词 short-term traffic volume prediction TENSOR Tucker decomposition finite traffic volume data
原文传递
An Innovative Approach for the Short-term Traffic Flow Prediction 被引量:2
9
作者 Xing Su Minghui Fan +2 位作者 Minjie Zhang Yi Liang Limin Guo 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2021年第5期519-532,共14页
Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty ... Traffic flow prediction plays an important role in intelligent transportation applications,such as traffic control,navigation,path planning,etc.,which are closely related to people's daily life.In the last twenty years,many traffic flow prediction approaches have been proposed.However,some of these approaches use the regression based mechanisms,which cannot achieve accurate short-term traffic flow predication.While,other approaches use the neural network based mechanisms,which cannot work well with limited amount of training data.To this end,a light weight tensor-based traffic flow prediction approach is proposed,which can achieve efficient and accurate short-term traffic flow prediction with continuous traffic flow data in a limited period of time.In the proposed approach,first,a tensor-based traffic flow model is proposed to establish the multi-dimensional relationships for traffic flow values in continuous time intervals.Then,a CANDECOMP/PARAFAC decomposition based algorithm is employed to complete the missing values in the constructed tensor.Finally,the completed tensor can be directly used to achieve efficient and accurate traffic flow prediction.The experiments on the real dataset indicate that the proposed approach outperforms many current approaches on traffic flow prediction with limited amount of traffic flow data. 展开更多
关键词 short-term traffic flow prediction TENSOR CP decomposition limited amount of data
原文传递
MCA-TFP Model:A Short-Term Traffic Flow Prediction Model Based on Multi-characteristic Analysis
10
作者 Xiujuan Xu Lu Xu +3 位作者 Yulin Bai Zhenzhen Xu Xiaowei Zhao Yu Liu 《国际计算机前沿大会会议论文集》 2020年第2期274-289,共16页
With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term tr... With the urbanization,urban transportation has become a key factor restricting the development of a city.In a big city,it is important to improve the efficiency of urban transportation.The key to realize short-term traffic flow prediction is to learn its complex spatial correlation,temporal correlation and randomness of traffic flow.In this paper,the convolution neural network(CNN)is proposed to deal with spatial correlation among different regions,considering that the large urban areas leads to a relatively deep Network layer.First three gated recurrent unit(GRU)were used to deal with recent time dependence,daily period dependence and weekly period dependence.Considering that each historical period data to forecast the influence degree of the time period is different,three attention mechanism was taken into GRU.Second,a twolayer full connection network was applied to deal with the randomness of short-term flow combined with additional information such as weather data.Besides,the prediction model was established by combining these three modules.Furthermore,in order to verify the influence of spatial correlation on prediction model,an urban functional area identification model was introduced to identify different functional regions.Finally,the proposed model was validated based on the history of New York City taxi order data and reptiles for weather data.The experimental results show that the prediction precision of our model is obviously superior to the mainstream of the existing prediction methods. 展开更多
关键词 Urban transportation short-term traffic flow prediction Multi-characteristic analysis MCA-TFP model
原文传递
Highway icing time prediction with deep learning approaches based on data from road sensors 被引量:1
11
作者 WANG ShiHong WANG TianLe +4 位作者 PEI Xuan WANG Hao ZHU Qiang TANG Tao HOU TaoGang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第7期1987-1999,共13页
In harsh climates,highway icing poses a hazard to traffic safety and increases road maintenance costs.It is of great significance to predict when the highway icing may occur and take a preventive plan.However,there ar... In harsh climates,highway icing poses a hazard to traffic safety and increases road maintenance costs.It is of great significance to predict when the highway icing may occur and take a preventive plan.However,there are few studies on highway icing time prediction due to the scarcity and complexity of data.In this study,variables of icing temperature,friction,ice percentage,road surface temperature,water film height,saline concentration,and road condition were collected by road sensors distributed on a highway in China.A large-scale time series highway surface information dataset called HighwayIce is formed.Furthermore,a deep learning approach called IceAlarm,composed of long short-term memory neural network(LSTM),multilayer perceptron(MLP),and residual connection,has been developed to predict when the highway will ice.The LSTM is used to process dynamic variables,the MLP is used to process static variables,and the fully-connected layers with residual connections are used to make a deep fusion.The experimental results show that the average mean absolute error before icing using the IceAlarm model is about 6min and outperforms all baseline models.The HighwayIce dataset and IceAlarm model can help improve the prediction accuracy and efficiency of forecasting real-world road icing time,therefore reducing the impact of icy road conditions on traffic. 展开更多
关键词 road icing time prediction road surface condition multilayer perceptron(MLP) long short-term memory(LSTM) residual connection
原文传递
基于时空耦合特性的充电站运行状态预测 被引量:8
12
作者 苏粟 李玉璟 +3 位作者 夏明超 汤小康 韦存昊 梁方 《电力系统自动化》 EI CSCD 北大核心 2022年第3期23-32,共10页
提出一种基于时空耦合特性和深度学习模型的充电站运行状态预测方法。首先,基于充电站历史运行数据和所在区域的交通通行速度数据集,利用k-means聚类方法将充电站划分为不同类型,分析充电站运行状态在时间上的特性;建立单个充电站的&qu... 提出一种基于时空耦合特性和深度学习模型的充电站运行状态预测方法。首先,基于充电站历史运行数据和所在区域的交通通行速度数据集,利用k-means聚类方法将充电站划分为不同类型,分析充电站运行状态在时间上的特性;建立单个充电站的"偏移量-交通-时间"三维矩阵模型,深度挖掘充电站运行状态与周边交通状况在时间和空间上的耦合相关性。其次,将充电站状态与交通状况的时间滞后相关特性进行空间重构,利用卷积神经网络进行特征提取,通过长短期记忆网络进行时间序列预测,构建基于Keras深度学习框架的充电站运行状态多步预测模型。最后,以20个充电站的真实运行数据进行验证,并与多种预测算法进行对比,结果表明,所提方法具有较高的预测精度。 展开更多
关键词 充电站 运行状态 交通状况 多步预测 Keras深度学习框架
下载PDF
基于负二项模型区域日度事故预测及影响因素分析 被引量:3
13
作者 何庆 马社强 李洋 《交通信息与安全》 CSCD 北大核心 2020年第1期61-66,83,共7页
分析区域日度交通事故规模的影响因素,是做好区域日度交通事故短时预测与防控的基础。搜集北京某区域2012-2015年道路交通事故、气象和日期性质等数据,采用负二项回归技术,建立了区域交通事故预测模型;以2012-2014年的数据作为训练集,以... 分析区域日度交通事故规模的影响因素,是做好区域日度交通事故短时预测与防控的基础。搜集北京某区域2012-2015年道路交通事故、气象和日期性质等数据,采用负二项回归技术,建立了区域交通事故预测模型;以2012-2014年的数据作为训练集,以2015年的数据为测试集,拟合模型伪R2为0.645,预测期内绝对百分误差的中位数为17.04%,模型预测效果较好,达到了精度要求。模型还表明:①节假日期间事故减少,节假日前1 d事故增加,节假日后1 d天事故平稳;②1周内,周一和周日事故规模相对较小;③1年内,2月、3月事故规模稍小,7月、9月、10月、11月、12月事故规模稍高;④尾号限行对事故规模影响大,但针对尾号为4和9的限行几乎没有影响;⑤相较于晴天,多数非晴朗天气情况下事故规模反而下降;⑥日平均气温提高会小幅降低事故规模,但日最高气温和最低气温之差增大会增加事故规模。 展开更多
关键词 交通安全 事故数预测模型 负二项回归 气象条件 日期性质
下载PDF
分对数模型在城市快速路交通状态预测中的应用
14
作者 杨兆升 龚勃文 +1 位作者 林赐云 张欣伟 《北京工业大学学报》 EI CAS CSCD 北大核心 2009年第4期486-492,共7页
在分析相邻检测器截面间交通流的高度非线性和时空耦合性特点的基础上,结合上海市某一快速路段环型线圈检测器数据和浮动车GPS数据,采用数据挖掘技术提取检测器截面间的交通流时空数据.运用多项式分对数模型对所提取的时空数据进行统计... 在分析相邻检测器截面间交通流的高度非线性和时空耦合性特点的基础上,结合上海市某一快速路段环型线圈检测器数据和浮动车GPS数据,采用数据挖掘技术提取检测器截面间的交通流时空数据.运用多项式分对数模型对所提取的时空数据进行统计分类分析,依托特征参数建立交通状态多项K-Logit指数模型.结合快速路匝道控制措施,采用VISSIM COM与VC++6.0为仿真平台,对实验数据进行仿真,结果表明:分对数模型对交通状态的预测精度能达到93.65%,行程时间平均缩减了17.1%,车辆延误降低了11.9%,行车速度提高了14.6%. 展开更多
关键词 多项K-Logit指数模型 多源数据融合 交通状态预测
下载PDF
配备中央空调的临街高层建筑物噪声影响研究
15
作者 欧阳玲 胡胜 《企业技术开发》 2016年第7期41-43,共3页
利用Sound PLAN噪声模拟软件的交通噪声和工业噪声预测模型,建立配备中央空调的临街高层建筑物的声环境三维仿真模型,评估临街建筑物中央空调噪声与交通噪声污染分布和共同影响,为城市声环境评价与项目的设计提供相应的技术支持。
关键词 中央空调 高层建筑 交通噪声 噪声预测
下载PDF
基于深度学习的智能交通视频多目标检测研究
16
作者 左国才 陈明丽 +2 位作者 匡林爱 吴小平 刘君 《智能计算机与应用》 2020年第8期180-182,共3页
国内大中城市的人流量、车流量与日俱增,面临着严重的交通拥堵问题,建立完善智能交通系统是解决交通问题的有效方法之一。本文提出一种基于堆栈式去噪自编码器深度学习框架的复杂交通场景中机动车辆的多目标检测算法,通过实时检测车辆... 国内大中城市的人流量、车流量与日俱增,面临着严重的交通拥堵问题,建立完善智能交通系统是解决交通问题的有效方法之一。本文提出一种基于堆栈式去噪自编码器深度学习框架的复杂交通场景中机动车辆的多目标检测算法,通过实时检测车辆流量来完成交通状态预测。实验证明,使用堆栈式去噪自编码器深度学习框架,提取目标机动车辆深度特征,实现多目标检测,提高多目标识别检测效果,切实提高交通状态预测的准确率。 展开更多
关键词 深度学习 多目标检测 交通状态预测
下载PDF
季节性ARiMA模型在稀疏交通流下的预测方法 被引量:10
17
作者 祁伟 李晔 汪作新 《公路交通科技》 CAS CSCD 北大核心 2014年第4期130-135,共6页
交通流监测存在普遍的稀疏性,理想的交通流预测模型应该能够充分利用交通流数据的特征,克服稀疏性问题。通过大量的数据分析,城市道路交通流被证实存在时序上的周期性特征。同时,数据分析结果也表明了交通观测数据稀疏性的普遍存在,而... 交通流监测存在普遍的稀疏性,理想的交通流预测模型应该能够充分利用交通流数据的特征,克服稀疏性问题。通过大量的数据分析,城市道路交通流被证实存在时序上的周期性特征。同时,数据分析结果也表明了交通观测数据稀疏性的普遍存在,而且稀疏的分布不均匀,有些极端稀疏道路甚至出现数天的观测缺失。因此,交通流预测模型应该有对稀疏的适应性,而季节性ARiMA交通流预测模型的引入能够很好地利用时序周期特征计算交通观测值的缺失。这种模型的优势在于融合了邻近的交通流观察值和交通流数据的周期性,消除了道路稀疏性导致观测值缺失带来的预测障碍。对比试验的展示表明了这种模型对交通流数据周期性特征的利用和对稀疏性的适应。 展开更多
关键词 交通工程 实时交通状况预测 时序分析 ARIMA模型 稀疏性
下载PDF
基于短时交通流预测的广域动态交通路径诱导方法 被引量:12
18
作者 韩直 徐冲聪 韩嵩乔 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第1期117-123,129,共8页
为提升车辆通行效率,以预测型诱导策略为基础,以排队长度作为交通诱导的约束条件,利用小波神经网络短时交通量预测预知路段堵死事件发生路段,通过广域诱导时空边界条件对事件路段进行节点分级和诱导周期长度界定,进而建立广域诱导模型;... 为提升车辆通行效率,以预测型诱导策略为基础,以排队长度作为交通诱导的约束条件,利用小波神经网络短时交通量预测预知路段堵死事件发生路段,通过广域诱导时空边界条件对事件路段进行节点分级和诱导周期长度界定,进而建立广域诱导模型;对事件区域路网进行分区,进一步确定该模型诱导起点位置,引入基于路径尺度的Logit路径选择模型作为诱导路径选择方法,通过流量迭代分配方法实现路网负载均衡.通过实例验证,该诱导方法能有效地缓解道路交通拥堵,提高路网通行效率. 展开更多
关键词 智能交通 路径诱导 短时交通流预测 广域诱导模型 时空边界条件 LOGIT模型 动态流量分配
下载PDF
Adaboost算法原理在实时道路危险预测的应用研究
19
作者 魏娟 《太原师范学院学报(自然科学版)》 2018年第3期46-52,共7页
在我国,交通事故年伤亡人数依然高居世界第二.因此,做好对道路危险预测,挖掘道路事故的形成规律,协助控制道路交通安全,采取合理的策略应对道路危险事故,是当前极其重要的研究课题.当前计算机技术朝着智能化、数字化与系统化方向的发展... 在我国,交通事故年伤亡人数依然高居世界第二.因此,做好对道路危险预测,挖掘道路事故的形成规律,协助控制道路交通安全,采取合理的策略应对道路危险事故,是当前极其重要的研究课题.当前计算机技术朝着智能化、数字化与系统化方向的发展,利用Adaboost算法,可以实现对道路危险进行实时的预测. 展开更多
关键词 Adaboost算法原理 实时道路危险预测 交通情况
下载PDF
基于改进SVM的城市道路短时交通状态预测 被引量:5
20
作者 闫贺 朱丽 戚湧 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期129-137,共9页
为提高短时交通状态预测的精度,使交通管理者更有效地进行交通规划和管理,本文把基于L 1范数距离度量的最小二乘孪生有界支持向量机(twin bounded support vector machine,TBSVM)扩展成多分类算法用于短时交通状态预测,简称MLSTBSVM L1... 为提高短时交通状态预测的精度,使交通管理者更有效地进行交通规划和管理,本文把基于L 1范数距离度量的最小二乘孪生有界支持向量机(twin bounded support vector machine,TBSVM)扩展成多分类算法用于短时交通状态预测,简称MLSTBSVM L1.在实验数据上对MLSTBSVM L1算法的有效性进行验证,实验结果表明,相比于其他预测算法,提出的MLSTBSVM L1算法在预测精度上有较大提升. 展开更多
关键词 短时交通状态预测 机器学习 MLSTBSVM L1 算法 TBSVM算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部