期刊文献+
共找到2,837篇文章
< 1 2 142 >
每页显示 20 50 100
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
1
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Spatiotemporal Prediction of Urban Traffics Based on Deep GNN
2
作者 Ming Luo Huili Dou Ning Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期265-282,共18页
Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of ... Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data.As well as to fulfil both long-termand short-termprediction objectives,a better representation of the temporal dependency and global spatial correlation of traffic data is needed.In order to do this,the Spatiotemporal Graph Neural Network(S-GNN)is proposed in this research as amethod for traffic prediction.The S-GNN simultaneously accepts various traffic data as inputs and investigates the non-linear correlations between the variables.In terms of modelling,the road network is initially represented as a spatiotemporal directed graph,with the features of the samples at the time step being captured by a convolution module.In order to assign varying attention weights to various adjacent area nodes of the target node,the adjacent areas information of nodes in the road network is then aggregated using a graph network.The data is output using a fully connected layer at the end.The findings show that S-GNN can improve short-and long-term traffic prediction accuracy to a greater extent;in comparison to the control model,the RMSE of S-GNN is reduced by about 0.571 to 9.288 and the MAE(Mean Absolute Error)by about 0.314 to 7.678.The experimental results on two real datasets,Pe MSD7(M)and PEMS-BAY,also support this claim. 展开更多
关键词 Urban traffic traffic temporal correlation GNN prediction
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
3
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
4
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc... A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature. 展开更多
关键词 traffic flow prediction sptiotemporal data heterogeneous data Conv-BiLSTM DATA-CENTRIC intra-data
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction
5
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
6
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 Graph neural network Multi-head attention mechanism Spatio-temporal dependency traffic flow prediction
下载PDF
Development and validation of a circulating tumor DNA-based optimization-prediction model for short-term postoperative recurrence of endometrial cancer
7
作者 Yuan Liu Xiao-Ning Lu +3 位作者 Hui-Ming Guo Chan Bao Juan Zhang Yu-Ni Jin 《World Journal of Clinical Cases》 SCIE 2024年第18期3385-3394,共10页
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r... BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC. 展开更多
关键词 Circulating tumor DNA Endometrial cancer short-term recurrence predictive model Prospective validation
下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
8
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:1
9
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction Long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:1
10
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
Traffic prediction enabled dynamic access points switching for energy saving in dense networks
11
作者 Yuchao Zhu Shaowei Wang 《Digital Communications and Networks》 SCIE CSCD 2023年第4期1023-1031,共9页
To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by depl... To meet the ever-increasing traffic demand and enhance the coverage of cellular networks,network densification is one of the crucial paradigms of 5G and beyond mobile networks,which can improve system capacity by deploying a large number of Access Points(APs)in the service area.However,since the energy consumption of APs generally accounts for a substantial part of the communication system,how to deal with the consequent energy issue is a challenging task for a mobile network with densely deployed APs.In this paper,we propose an intelligent AP switching on/off scheme to reduce the system energy consumption with the prerequisite of guaranteeing the quality of service,where the signaling overhead is also taken into consideration to ensure the stability of the network.First,based on historical traffic data,a long short-term memory method is introduced to predict the future traffic distribution,by which we can roughly determine when the AP switching operation should be triggered;second,we present an efficient three-step AP selection strategy to determine which of the APs would be switched on or off;third,an AP switching scheme with a threshold is proposed to adjust the switching frequency so as to improve the stability of the system.Experiment results indicate that our proposed traffic forecasting method performs well in practical scenarios,where the normalized root mean square error is within 10%.Furthermore,the achieved energy-saving is more than 28% on average with a reasonable outage probability and switching frequency for an area served by 40 APs in a commercial mobile network. 展开更多
关键词 Access points switching on/off ENERGY-SAVING Green network Long short-term memory traffic prediction
下载PDF
Prediction of Traffic Volume of Motor Vehicles Based on Mobile Phone Signaling Technology
12
作者 Jin Shang Hailong Su +2 位作者 Kai Hu Xin Guo Defa Sun 《Computers, Materials & Continua》 SCIE EI 2023年第4期799-814,共16页
Urban traffic volume detection is an essential part of trafficplanning in terms of urban planning in China. To improve the statisticsefficiency of road traffic volume, this thesis proposes a method for predictingmotor... Urban traffic volume detection is an essential part of trafficplanning in terms of urban planning in China. To improve the statisticsefficiency of road traffic volume, this thesis proposes a method for predictingmotor vehicle traffic volume on urban roads in small and medium-sizedcities during the traffic peak hour by using mobile signal technology. Themethod is verified through simulation experiments, and the limitations andthe improvement methods are discussed. This research can be divided intothree parts: Firstly, the traffic patterns of small and medium-sized cities areobtained through a questionnaire survey. A total of 19745 residents weresurveyed in Luohe, a medium-sized city in China and five travel modes oflocal people were obtained. Secondly, after the characteristics of residents’rest and working time are investigated, a method is proposed in this studyfor the distribution of urban residential and working places based on mobilephone signaling technology. Finally, methods for predicting traffic volume ofthese travel modes are proposed after the characteristics of these travel modesand methods for the distribution of urban residential and working placesare analyzed. Based on the actual traffic volume data observed at offlineintersections, the project team takes Luohe city as the research object and itverifies the accuracy of the prediction method by comparing the predictiondata. The prediction simulation results of traffic volume show that the averageerror rate of traffic volume is unstable. The error rate ranges from 10% to 30%.In this thesis, simulation experiments and field investigations are adopted toanalyze why these errors occur. 展开更多
关键词 traffic planning prediction of traffic volume mobile phone signaling technology small and medium-sized cities traffic peak hour
下载PDF
Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction
13
作者 Hong Zhang Gang Yang +1 位作者 Hailiang Yu Zan Zheng 《Computers, Materials & Continua》 SCIE EI 2023年第7期1047-1063,共17页
To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based ... To accurately predict traffic flow on the highways,this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism(CNN-BiLSTM-Attention)traffic flow prediction model based on Kalman-filtered data processing.Firstly,the original fluctuating data is processed by Kalman filtering,which can reduce the instability of short-term traffic flow prediction due to unexpected accidents.Then the local spatial features of the traffic data during different periods are extracted,dimensionality is reduced through a one-dimensional CNN,and the BiLSTM network is used to analyze the time series information.Finally,the Attention Mechanism assigns feature weights and performs Soft-max regression.The experimental results show that the data processed by Kalman filter is more accurate in predicting the results on the CNN-BiLSTM-Attention model.Compared with the CNN-BiLSTM model,the Root Mean Square Error(RMSE)of the Kal-CNN-BiLSTM-Attention model is reduced by 17.58 and Mean Absolute Error(MAE)by 12.38,and the accuracy of the improved model is almost free from non-working days.To further verify the model’s applicability,the experiments were re-run using two other sets of fluctuating data,and the experimental results again demonstrated the stability of the model.Therefore,the Kal-CNN-BiLSTM-Attention traffic flow prediction model proposed in this paper is more applicable to a broader range of data and has higher accuracy. 展开更多
关键词 HIGHWAY traffic flow prediction Kalman filter CNN-BiLSTM-Attention
下载PDF
Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model
14
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computers, Materials & Continua》 SCIE EI 2023年第9期3097-3112,共16页
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo... Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%. 展开更多
关键词 Heterogeneous data traffic flow prediction deep learning CNN LSTM
下载PDF
Parameter Tuned Deep Learning Based Traffic Critical Prediction Model on Remote Sensing Imaging
15
作者 Sarkar Hasan Ahmed Adel Al-Zebari +1 位作者 Rizgar R.Zebari Subhi R.M.Zeebaree 《Computers, Materials & Continua》 SCIE EI 2023年第5期3993-4008,共16页
Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such a... Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features.This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images(ODLTCP-HRRSI)to resolve these issues.The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities.To attain this,the presented ODLTCP-HRRSI model performs two major processes.At the initial stage,the ODLTCP-HRRSI technique employs a convolutional neural network with an auto-encoder(CNN-AE)model for productive and accurate traffic flow.Next,the hyperparameter adjustment of the CNN-AE model is performed via the Bayesian adaptive direct search optimization(BADSO)algorithm.The experimental outcomes demonstrate the enhanced performance of the ODLTCP-HRRSI technique over recent approaches with maximum accuracy of 98.23%. 展开更多
关键词 Remote sensing images traffic prediction deep learning smart cities intelligent transportation systems
下载PDF
A Nonlinear Spatiotemporal Optimization Method of Hypergraph Convolution Networks for Traffic Prediction
16
作者 Difeng Zhu Zhimou Zhu +3 位作者 Xuan Gong Demao Ye Chao Li Jingjing Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3083-3100,共18页
Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement o... Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively. 展开更多
关键词 Intelligent transportation systems traffic prediction hypergraph convolution networks spatiotemporal optimization
下载PDF
Short Term Traffic Flow Prediction Using Hybrid Deep Learning
17
作者 Mohandu Anjaneyulu Mohan Kubendiran 《Computers, Materials & Continua》 SCIE EI 2023年第4期1641-1656,共16页
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil... Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%. 展开更多
关键词 Short term traffic flow prediction principal component analysis stacked auto encoders long short term memory k nearest neighbors:intelligent transportation system
下载PDF
MEEMD-DBA-based short term traffic flow prediction
18
作者 张玺君 HAO Jun +1 位作者 NIE Shengyuan CUI Yong 《High Technology Letters》 EI CAS 2023年第1期41-49,共9页
Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and l... Aiming at the problem that ensemble empirical mode decomposition(EEMD)method can not completely neutralize the added noise in the decomposition process,which leads to poor reconstruction of decomposition results and low accuracy of traffic flow prediction,a traffic flow prediction model based on modified ensemble empirical mode decomposition(MEEMD),double-layer bidirectional long-short term memory(DBiLSTM)and attention mechanism is proposed.Firstly,the intrinsic mode functions(IMFs)and residual components(Res)are obtained by using MEEMD algorithm to decompose the original traffic data and separate the noise in the data.Secondly,the IMFs and Res are put into the DBiLSTM network for training.Finally,the attention mechanism is used to enhance the extraction of data features,then the obtained results are reconstructed and added.The experimental results show that in different scenarios,the MEEMD-DBiLSTM-attention(MEEMD-DBA)model can reduce the data reconstruction error effectively and improve the accuracy of the short-term traffic flow prediction. 展开更多
关键词 modified ensemble empirical mode decomposition(MEEMD) double bidirectional-directional gated recurrent unit(DBiGRU) attention mechanism traffic flow prediction
下载PDF
Extreme gradient boosting algorithm based urban daily traffic index prediction model:a case study of Beijing,China
19
作者 Jiancheng Weng Kai Feng +2 位作者 Yu Fu Jingjing Wang Lizeng Mao 《Digital Transportation and Safety》 2023年第3期220-228,共9页
The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is... The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks. 展开更多
关键词 traffic prediction traffic performance index(TPI) Influencing factor XGBOOST Machine learning model
下载PDF
Overview of machine learning-based traffic flow prediction
20
作者 Zhibo Xing Mingxia Huang Dan Peng 《Digital Transportation and Safety》 2023年第3期164-175,共12页
Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in ... Traffic flow prediction is an important component of intelligent transportation systems.Recently,unprecedented data availability and rapid development of machine learning techniques have led to tremendous progress in this field.This article first introduces the research on traffic flow prediction and the challenges it currently faces.It then proposes a classification method for literature,discussing and analyzing existing research on using machine learning methods to address traffic flow prediction from the perspectives of the prediction preparation process and the construction of prediction models.The article also summarizes innovative modules in these models.Finally,we provide improvement strategies for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future. 展开更多
关键词 traffic flow prediction Machine learning Intelligent transportation Deep learning
下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部