Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,auton...Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,autonomous vehicles(AVs)are expected to have exceptional perception systems to capture instantaneously their driving environments for predicting lane changes.By exploring the Waymo open motion dataset,this study proposes a framework to explore autonomous driving data and investigate lane change behaviors.In the framework,this study develops a Long Short-Term Memory(LSTM)model to predict lane changing behaviors.The concept of Vehicle Operating Space(VOS)is introduced to quantify a vehicle's instantaneous driving environment as an important indicator used to predict vehicle lane changes.To examine the robustness of the model,a series of sensitivity analysis are conducted by varying the feature selection,prediction horizon,and training data balancing ratios.The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher accuracy and recall for predicting lane-change behaviors.This study offers an example along with a methodological framework for transportation researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments.展开更多
Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail...Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.展开更多
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(...Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.展开更多
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,...A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.展开更多
In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate a...In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm(GA).The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons.The predicted demand power,the state of charge(SOC),and the demand power at the current moment are used as the state input of the agent,and the real-time control of the control strategy is realized by the MPC method.The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN,0.8439 kg compared with ECMS,and 0.742 kg compared with the power-following control strategy.The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg,0.193%,while the SOC of the power battery remains stable.Finally,the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.展开更多
In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering th...In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.展开更多
Trajectory prediction is an essential component in autonomous driving systems,as it can forecast the future movements of surrounding vehicles,thereby enhancing the decision-making and planning capabilities of autonomo...Trajectory prediction is an essential component in autonomous driving systems,as it can forecast the future movements of surrounding vehicles,thereby enhancing the decision-making and planning capabilities of autonomous driving systems.Traditional models relying on constant acceleration and constant velocity often experience a reduction in prediction accu-racy as the forecasted timeframe extends.This limitation makes it challenging to meet the demands for medium to long-term trajectory prediction.Conversely,data-driven models,particularly those based on Long Short-Term Memory(LSTM)neural networks,have demonstrated superior performance in medium to long-term trajectory prediction.Therefore,this study introduces a hierarchical LSTM-based method for vehicle trajectory prediction.Considering the difficulty of using a single LSTM model to predict trajectories for all driving intentions,the trajectory prediction task is decomposed into three sequential steps:driving intention prediction,lane change time prediction,and trajectory prediction.Furthermore,given that the driving intent and trajectory of a vehicle are always subject to the influence of the surrounding traffic flow,the predictive model proposed in this paper incorporates the interactional information of neighboring vehicle movements into the model input.The proposed method is trained and validated on the real vehicle trajectory dataset Next Generation Simulation.The results show that the proposed hierarchical LSTM method has a lower prediction error compared to the integral LSTM model.展开更多
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw...Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.展开更多
Advanced vehicular control technologies rely on accurate speed prediction to make ecological and safe decisions. This paper proposes a novel stochastic speed prediction method for connected vehicles by incorporating a...Advanced vehicular control technologies rely on accurate speed prediction to make ecological and safe decisions. This paper proposes a novel stochastic speed prediction method for connected vehicles by incorporating a Bayesian network(BN) and a Back Propagation(BP) neural network. A BN model is first designed for predicting the stochastic vehicular speed in a priori. To improve the accuracy of the BN-based speed prediction, a BP-based predicted speed error compensation module is constructed by formulating a mapping between the predicted speed and its corresponding prediction error. In the end, a filtering algorithm is developed to smoothen the compensated stochastic vehicular speed. To validate the workings of the proposed approaches in experiments, two typical scenarios are considered: one predecessor vehicle in a double-vehicle scenario and two predecessor vehicles in a multi-vehicle scenario. Simulation results under the considered scenarios demonstrate that the proposed BN-BP fusion method outperforms the BN-based method with respect to the root mean square error, standardized residuals, and R-squared, and the online prediction time of proposed fusion prediction can satisfy a real-time application requirement. The main highlighted contributions of this article are threefold:(1) We put forward an improved BN method, which is combined with a BP neural network, to construct a stochastic vehicular speed prediction method under connected driving;(2) different from existing methods, a unique interconnected framework that consists of a stochastic vehicular speed prediction module, a compensation module, and a speed smoothing module is proposed;(3) extensive simulation studies based on a set of evaluation metrics are illustrated to reveal the advantages and merits of the proposed approaches.展开更多
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact...Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.展开更多
With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed...With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction.展开更多
文摘Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,autonomous vehicles(AVs)are expected to have exceptional perception systems to capture instantaneously their driving environments for predicting lane changes.By exploring the Waymo open motion dataset,this study proposes a framework to explore autonomous driving data and investigate lane change behaviors.In the framework,this study develops a Long Short-Term Memory(LSTM)model to predict lane changing behaviors.The concept of Vehicle Operating Space(VOS)is introduced to quantify a vehicle's instantaneous driving environment as an important indicator used to predict vehicle lane changes.To examine the robustness of the model,a series of sensitivity analysis are conducted by varying the feature selection,prediction horizon,and training data balancing ratios.The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher accuracy and recall for predicting lane-change behaviors.This study offers an example along with a methodological framework for transportation researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments.
基金National Natural Science Foundation of China(Grant No.51775478)Hebei Provincial Natural Science Foundation of China(Grant Nos.E2016203173,E2020203078).
文摘Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.
基金Indian Institute of Technology Bombay for providing funding (Project code:13IRCCSG001)
文摘Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.
基金The Project of Research on Technologyand Devices for Traffic Guidance (Vehicle Navigation)System of Beijing Municipal Commission of Science and Technology(No H030630340320)the Project of Research on theIntelligence Traffic Information Platform of Beijing Education Committee
文摘A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.
基金supported by the National Natural Science Foundation of China(No.52175236)Research and development and demonstration application of heavy-duty diesel vehicle exhaust emission testing technology,China(No.24-8-cspz-18-nsh)Qingdao Civi Science and Technology Plan,China(No.19-6-1-88-nsh).
文摘In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm(GA).The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons.The predicted demand power,the state of charge(SOC),and the demand power at the current moment are used as the state input of the agent,and the real-time control of the control strategy is realized by the MPC method.The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN,0.8439 kg compared with ECMS,and 0.742 kg compared with the power-following control strategy.The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg,0.193%,while the SOC of the power battery remains stable.Finally,the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.
基金Project(20180608005600843855-19)supported by the International Graduate Exchange Program of Beijing Institute of Technology,China。
文摘In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.
基金supported by the Jilin Province Science and Technology Development Program(20210301023GX).
文摘Trajectory prediction is an essential component in autonomous driving systems,as it can forecast the future movements of surrounding vehicles,thereby enhancing the decision-making and planning capabilities of autonomous driving systems.Traditional models relying on constant acceleration and constant velocity often experience a reduction in prediction accu-racy as the forecasted timeframe extends.This limitation makes it challenging to meet the demands for medium to long-term trajectory prediction.Conversely,data-driven models,particularly those based on Long Short-Term Memory(LSTM)neural networks,have demonstrated superior performance in medium to long-term trajectory prediction.Therefore,this study introduces a hierarchical LSTM-based method for vehicle trajectory prediction.Considering the difficulty of using a single LSTM model to predict trajectories for all driving intentions,the trajectory prediction task is decomposed into three sequential steps:driving intention prediction,lane change time prediction,and trajectory prediction.Furthermore,given that the driving intent and trajectory of a vehicle are always subject to the influence of the surrounding traffic flow,the predictive model proposed in this paper incorporates the interactional information of neighboring vehicle movements into the model input.The proposed method is trained and validated on the real vehicle trajectory dataset Next Generation Simulation.The results show that the proposed hierarchical LSTM method has a lower prediction error compared to the integral LSTM model.
基金supported by the undergraduate training program for innovation and entrepreneurship of NUIST(XJDC202110300239).
文摘Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51905419 and 51175419)。
文摘Advanced vehicular control technologies rely on accurate speed prediction to make ecological and safe decisions. This paper proposes a novel stochastic speed prediction method for connected vehicles by incorporating a Bayesian network(BN) and a Back Propagation(BP) neural network. A BN model is first designed for predicting the stochastic vehicular speed in a priori. To improve the accuracy of the BN-based speed prediction, a BP-based predicted speed error compensation module is constructed by formulating a mapping between the predicted speed and its corresponding prediction error. In the end, a filtering algorithm is developed to smoothen the compensated stochastic vehicular speed. To validate the workings of the proposed approaches in experiments, two typical scenarios are considered: one predecessor vehicle in a double-vehicle scenario and two predecessor vehicles in a multi-vehicle scenario. Simulation results under the considered scenarios demonstrate that the proposed BN-BP fusion method outperforms the BN-based method with respect to the root mean square error, standardized residuals, and R-squared, and the online prediction time of proposed fusion prediction can satisfy a real-time application requirement. The main highlighted contributions of this article are threefold:(1) We put forward an improved BN method, which is combined with a BP neural network, to construct a stochastic vehicular speed prediction method under connected driving;(2) different from existing methods, a unique interconnected framework that consists of a stochastic vehicular speed prediction module, a compensation module, and a speed smoothing module is proposed;(3) extensive simulation studies based on a set of evaluation metrics are illustrated to reveal the advantages and merits of the proposed approaches.
文摘Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.
基金supported by the National Key Research and Development Programe of China (2016YFB0901900)the National Natural Science Foundation of China (U1908213)+2 种基金the Fundamental the Research Funds for the Central Universities(N182303037)Colleges and Universities in Hebei Province Science Research Program (QN2020504)the Foundation of Northeastern University at Qinhuangdao (XNB201803)。
文摘With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction.