期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions 被引量:5
1
作者 KANG Li-yun YUE Shan-chao LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期2028-2039,共12页
Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments... Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus(P) application at different soil layers on root growth, grain yield, and water-use efficiency(WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive(Xiaoyan 22, XY22) and one drought-tolerant(Changhan 58, CH58). The four P treatments were no P(control, CK), surface P(SP), deep P(DP), and deep-band P application(DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments(DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight(RW) and root length(RL) in deep soil layer(30-100 cm) were closely positively correlated with grain yield and WUE of CH58(but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars(r=0.94, P〈0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars. 展开更多
关键词 water stress phosphorus application soil layers grain yield root growth water-use efficiency
下载PDF
Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains 被引量:5
2
作者 QiFei HAN GePing LUO +2 位作者 ChaoFan LI Hui YE YaoLiang CHEN 《Journal of Arid Land》 SCIE CSCD 2013年第3期354-365,共12页
Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-c... Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity. 展开更多
关键词 elevational gradient net primary production water-use efficiency CLIMATE
下载PDF
Water-use efficiency in response to simulated increasing precipitation in a temperate desert ecosystem of Xinjiang, China 被引量:7
3
作者 HUANG Gang LI Yan +2 位作者 MU Xiaohan ZHAO Hongmei CAO Yanfeng 《Journal of Arid Land》 SCIE CSCD 2017年第6期823-836,共14页
Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored... Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems. 展开更多
关键词 desert ecosystem ecosystem water-use efficiency gross carbon exchange increasing precipitation leaf water-use efficiency net carbon exchange Gurbantunggut Desert
下载PDF
Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple 被引量:1
4
作者 HU Ling-yu YUE Hong +4 位作者 ZHANG Jing-yun LI Yang-tian-su GONG Xiao-qing ZHOU Kun MA Feng-wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第7期1968-1981,共14页
Myo-inositol and its derivatives play important roles in the tolerance of higher plants to abiotic stresses, and myo-inositol-1-phosphate synthase(MIPS) is the rate-limiting enzyme in myo-inositol biosynthesis. In thi... Myo-inositol and its derivatives play important roles in the tolerance of higher plants to abiotic stresses, and myo-inositol-1-phosphate synthase(MIPS) is the rate-limiting enzyme in myo-inositol biosynthesis. In this study, we found that increased myo-inositol biosynthesis enhanced drought tolerance in MdMIPS1-overexpressing apple lines under shortterm progressive drought stress. The effect of myo-inositol appeared to be mediated by the increased accumulation of osmoprotectants such as glucose, sucrose, and proline, and by the increased activities of antioxidant enzymes that eliminate reactive oxygen species. Moreover, enhanced water-use efficiency(WUE) was observed in MdMIPS1-overexpressing apple lines under long-term moderate water deficit conditions that mimicked the water availability in the soil of the Loess Plateau. Enhanced WUE may have been associated with the synergistic regulation of osmotic balance and stomatal aperture mediated by increased myo-inositol biosynthesis. Taken together, our findings shed light on the positive effects of MdMIPS1-mediated myo-inositol biosynthesis on drought tolerance and WUE in apple. 展开更多
关键词 APPLE MdMIPS1 MYO-INOSITOL water deficit drought tolerance water-use efficiency
下载PDF
Spatiotemporal Dynamics of Green Total-factor Water-use Efficiency and Its Influencing Factors in China
5
作者 MA Dalai ZHANG Fengtai +3 位作者 GAO Lei YANG Guangming YANG Qing AN Youzhi 《Chinese Geographical Science》 SCIE CSCD 2021年第5期795-814,共20页
In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE o... In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE of 30 provinces/municipalities/autonomous regions(hereafter provinces)in China(not including Tibet,Hong Kong,Macao,Taiwan as no data)from 2000 to 2018 using a minimum distance to the strong frontier model that contained an undesirable output.We further analyzed the regional differences and spatial correlations of GTFWUE using these values based on Global and Local Moran’s I statistics,and empirically determined the factors affecting GTFWUE using a spatial econometric model.The evaluation results revealed that the GTFWUE differed substantially between the regions.The provinces with high and low GTFWUE values were located in the coastal and inland areas of China,respectively.The eastern region had a significantly higher GTFWUE than the central and western regions.The GTFWUEs for all three regions(eastern,central,and western regions)decreased slowly from 2000 to 2011(except 2005),remained stable from 2012 to 2016,and rapidly increased in 2017 before decreasing again in 2018.We found significant spatial correlations between the provincial GTFWUEs.The GTFWUE for most provinces belonged to the high-high or low-low cluster region,revealing a significant spatial clustering effect of provincial GTFWUEs.We also found that China’s GTFWUE was highly promoted by economic growth,population size,opening-up level,and urbanization level,and was evidently hindered by water endowment,technological progress,and government influence.However,the water-use structure had little impact on GTFWUE.This study fully demonstrated that the water use mode would be improved,and water resources needed to be used more efficiently and green in China.Moreover,based on the findings of this study,several policy recommendations were proposed from the aspects of cross-regional cooperation,economy,society,and institution. 展开更多
关键词 green total-factor water-use efficiency(GTFWUE) spatiotemporal dynamics water scarcity influencing factors spatial econometric model
下载PDF
Quantitative Variation in Water-Use Efficiency across Water Regimes and Its Relationship with Circadian, Vegetative, Reproductive, and Leaf Gas-Exchange Traits 被引量:5
6
作者 Christine E. Edwards Brent E. Ewers +2 位作者 C. Robertson McClung Ping Lou Cynthia Weinig 《Molecular Plant》 SCIE CAS CSCD 2012年第3期653-668,共16页
Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architectu... Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE. 展开更多
关键词 Brassica rapa drought ECOPHYSIOLOGY floral traits G matrix leaf gas-exchange traits water-use efficiency vegetative traits
原文传递
Water-use efficiency of four native trees under CO_(2) enrichment and N addition in subtropical model forest ecosystems 被引量:1
7
作者 Yiyong Li Juxiu Liu +5 位作者 Genyun Chen Guoyi Zhou Wenjuan Huang Guangcai Yin Deqiang Zhang Yuelin Li 《Journal of Plant Ecology》 SCIE 2015年第4期411-419,共9页
Aims We aimed to evaluate the changes in water-use efficiency(WuE)in native tree species in forests of subtropical China,and determine how coexisting species would be responding to increases in atmospheric carbon diox... Aims We aimed to evaluate the changes in water-use efficiency(WuE)in native tree species in forests of subtropical China,and determine how coexisting species would be responding to increases in atmospheric carbon dioxide(CO_(2))concentrations and nitrogen(N)deposition.Methods We used model forest ecosystems in open-top chambers to study the effects of elevated CO_(2)(ca.700μmol mol−1)alone and together with N addition(NH4No3 applied at 100 kg N ha−1year−1)on WuE of four native tree species(Schima superba,Ormosia pin-nata,Castanopsis hystrix and Acmena acuminatissima)from 2006 to 2010.Important findingsour result indicated that all species increased their WuE when they were exposed to elevated CO_(2).although higher WuE was shown in faster-growing species(S.superba and O.pinnata)than that of slower-growing species(C.hystrix and Acmena acuminatissima),the increased extent of WuE induced by elevated CO_(2) was higher in the slower-growing species than that of the faster-growing species(P<0.01).the N treatment decreased WuE of S.superba,while the effects on other species were not significant.the interactions between elevated CO_(2) and N addition increased intrinsic WuE of S.superba significantly(P<0.001),however,it did not affect WuE of the other tree species significantly.We conclude that the responses of native tree species to elevated CO_(2) and N addition are different in subtropical China.the species-specific effects of elevated CO_(2) and N addition on WuE would have important implications on species composition in China’s subtropics in response to global change. 展开更多
关键词 tree species water-use efficiency CO_(2)enrichment N addition subtropical China
原文传递
Symbiotic performance,shoot biomass and water-use efficiency of three groundnut(Arachis hypogaea L.)genotypes in response to phosphorus supply under field conditions in Ethiopia
8
作者 Sofiya KMUHABA Felix DDAKORA 《Frontiers of Agricultural Science and Engineering》 2020年第4期455-466,共12页
Phosphorus is a key nutrient element involved in energy transfer for cellular metabolism,respiration and photosynthesis and its supply at low levels can affect legume nodulation,N2 fixation,and C assimilation.A twoyea... Phosphorus is a key nutrient element involved in energy transfer for cellular metabolism,respiration and photosynthesis and its supply at low levels can affect legume nodulation,N2 fixation,and C assimilation.A twoyear field study was conducted in Ethiopia in 2012 and 2013 to evaluate the effects of P supply on growth,symbiotic N2 nutrition,grain yield and water-use efficiency of three groundnut genotypes.Supplying P to the genotypes significantly increased their shoot biomass,symbiotic performance,grain yield,and C accumulation.There was,however,no effect on shootδ13C values in either year.Compared to the zero-P control,supplying 40 kg$ha–1 P markedly increased shoot biomass by 77%and 66%in 2012 and 2013,respectively.In both years,groundnut grain yields were much higher at 20 and 30 kg$ha–1 P.Phosphorus supply markedly reduced shootδ15N values and increased the%Ndfa and amount of Nfixed,indicating the direct involvement of P in promoting N2 fixation in nodulated groundnut.The three genotypes differed significantly inδ15N,%Ndfa,N-fixed,grain yield,C concentration,andδ13C.The phosphorusgenotype interaction was also significant for shoot DM,N content,N-fixed and soil N uptake. 展开更多
关键词 shoot yield N-fixed %Ndfa δ15N δ13C water-use efficiency
原文传递
Joint On-Demand Pruning and Online Distillation in Automatic Speech Recognition Language Model Optimization
9
作者 Soonshin Seo Ji-Hwan Kim 《Computers, Materials & Continua》 SCIE EI 2023年第12期2833-2856,共24页
Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these... Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these systems,it is important to deploy efficient models capable of adapting to diverse deployment conditions.In recent years,on-demand pruning methods have obtained significant attention within the ASR domain due to their adaptability in various deployment scenarios.However,these methods often confront substantial trade-offs,particularly in terms of unstable accuracy when reducing the model size.To address challenges,this study introduces two crucial empirical findings.Firstly,it proposes the incorporation of an online distillation mechanism during on-demand pruning training,which holds the promise of maintaining more consistent accuracy levels.Secondly,it proposes the utilization of the Mogrifier long short-term memory(LSTM)language model(LM),an advanced iteration of the conventional LSTM LM,as an effective alternative for pruning targets within the ASR framework.Through rigorous experimentation on the ASR system,employing the Mogrifier LSTM LM and training it using the suggested joint on-demand pruning and online distillation method,this study provides compelling evidence.The results exhibit that the proposed methods significantly outperform a benchmark model trained solely with on-demand pruning methods.Impressively,the proposed strategic configuration successfully reduces the parameter count by approximately 39%,all the while minimizing trade-offs. 展开更多
关键词 Automatic speech recognition neural language model Mogrifier long short-term memory PRUNING DISTILLATION efficient deployment OPTIMIZATION joint training
下载PDF
Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa 被引量:11
10
作者 Ying Lang Ming Wang +1 位作者 Jiangbao Xia Qiankun Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期45-53,共9页
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ... To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa. 展开更多
关键词 Chlorophyll fluorescence Gas exchange Photosynthetic rate Soil water deficit Stomatal mechanism water-use efficiency
下载PDF
A preliminary study of water use strategy of desert plants in Dunhuang,China 被引量:5
11
作者 YongQin CUI JianYing MA +2 位作者 Wei SUN JiaHuan SUN ZhengHu DUAN 《Journal of Arid Land》 SCIE CSCD 2015年第1期73-81,共9页
Water is a restrictive factor for plant growth and ecosystem stability in arid and semiarid areas. The dynamics of water availability in soils and water use by plants are consequently critical to ecosystem functions, ... Water is a restrictive factor for plant growth and ecosystem stability in arid and semiarid areas. The dynamics of water availability in soils and water use by plants are consequently critical to ecosystem functions, e.g. maintaining a high resistance to the changing climate. Plant water use strategies, including water-use efficiency (WUE) and the main water source that a plant species utilizes, play an important role in the evaluation of stability and sustainability of a plantation. The water use strategies of desert plants (Tamarix chinensis, Alhagi sparsifolia, Elaeagnus angustifolia, Sophora alopecuroides, Bassia dasyphylla and Nitraria sphaerocarpa) in three different habitats (saline land, sandy land and Gobi) in Dunhuang (located in the typical arid area of northwestern China) were studied. The stable isotope of oxygen was used to determine the main water source and leaf carbon isotope discrimination was used to estimate the long-term WUE of plant species in the summer of 2010. The results suggest that: 1) the studied desert plants took up soil water below the depth of 80 cm; 2) T. chinensis in the three habitats used deeper soil water and T. chinensis in the Gobi site had higher WUE than those in the saline land and the sandy land. The results indicated that desert plants in Dunhuang depended on stable water source and maintained high WUE to survive in water limited environments. 展开更多
关键词 desert plant stable isotope water source water-use efficiency Dunhuang
下载PDF
Long-Term Conservation Agriculture and Intensified Cropping Systems:Effects on Growth,Yield,Water,and Energy-use Efficiency of Maize in Northwestern India 被引量:3
12
作者 Chiter M.PARIHAR Malu R.YADAV +10 位作者 Shankar L.JAT Aditya K.SINGH Bhupender KUMAR Vijay POONIYA Sanatan PRADHAN Rakesh K.VERMA Mangi L.JAT Raj K.JAT Muli D.PARIHAR Hari S.NAYAK Yashpal S.SAHARAWAT 《Pedosphere》 SCIE CAS CSCD 2018年第6期952-963,共12页
Conservation agriculture(CA)-based best-bet crop management practices may increase crop and water productivity, while conserving and sustaining natural resources. We evaluated the performance of rainy season maize dur... Conservation agriculture(CA)-based best-bet crop management practices may increase crop and water productivity, while conserving and sustaining natural resources. We evaluated the performance of rainy season maize during 2014 under an ongoing long-term trial(established in 2008) with three tillage practices, i.e., permanent bed(PB), zero tillage(ZT), and conventional tillage(CT) as main plots, and four intensified maize-based cropping systems, i.e., maize-wheat-mungbean, maize-chickpea-Sesbania(MCS), maizemustard-mungbean, and maize-maize-Sesbania) as subplot treatments. In the seventh rainy season of the experiment, maize growth parameters, yield attributes, yield, and water-and energy-use efficiency were highest at fixed plots under ZT. Maize growth parameters were significantly(P < 0.05) superior under ZT and PB compared with CT. Maize yield attributes, including cobs per m^2(7.8), cob length(0.183 m), grain rows per cob(13.8), and grains per row(35.6), were significantly higher under ZT than CT; however, no significant effect of cropping systems was found on maize growth and yield attributes. Zero tillage exhibited the highest maize productivity(4 589 kg ha^(-1)). However, among the cropping systems, MCS exhibited the highest maize productivity(4 582 kg ha^(-1)). In maize, water use was reduced by 80.2–120.9 mm ha-1under ZT and PB compared with CT, which ultimately enhanced the economic water-use efficiency by 42.0% and 36.6%, respectively. The ZT and PB showed a 3.5%–31.8% increase in soil organic carbon(SOC) at different soil depths(0–0.45 m), and a 32.3%–39.9% increase in energy productivity compared with CT. Overall, our results showed that CA-based ZT and PB practices coupled with diversified maize-based cropping systems effectively enhanced maize yield and SOC,as well as water-and energy-use efficiency, in northwestern India. 展开更多
关键词 conventional TILLAGE economic water-use efficiency PERMANENT bed RAINY SEASON soil organic carbon zero TILLAGE
原文传递
Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought 被引量:2
13
作者 Giovanni Di Matteo Luigi Perini +5 位作者 Paolo Atzori Paolo De Angelis Tiziano Mei Giada Bertini Gianfranco Fabbio Giuseppe Scarascia Mugnozza 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第4期839-845,共7页
We estimated water-use efficiency and potential photosyn- thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in ... We estimated water-use efficiency and potential photosyn- thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech- niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos- tulated that responses to drought of coppiced trees would lead to differ- ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra- nean area. We observed physiological responses of the eoppiced trees that suggested acclimation in photosynthetic potential and water-use effi- ciency: (1) a significant reduction in stomatal conductance (p〈0.01) wasrecorded as the drought increased at the SW site; (2) foliar 813C increased as drought increased at the SW site (p〈0.01); (3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn- thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe. 展开更多
关键词 Mediterranean forest ecosystems forest acclimation stableisotopes leaf gas exchanges water-use efficiency foliar traits adaptivesilviculture.
下载PDF
Improving Rice-Based Cropping Pattern Through Soil Moisture and Integrated Nutrient Management in Mid-Tropical Plain Zone of Tripura, India 被引量:1
14
作者 A. K. SINGH M. CHAKRABORTI M. DATTA 《Rice science》 SCIE 2014年第5期299-304,共6页
An experiment was conducted in three fallow paddy fields situated on the mid-tropical plain zone of a northeastern Indian state (Tripura) to provide rice fallow management options using leftover soil moisture and nu... An experiment was conducted in three fallow paddy fields situated on the mid-tropical plain zone of a northeastern Indian state (Tripura) to provide rice fallow management options using leftover soil moisture and nutrients. The three experimental fields were managed by growing rice under the system of rice intensification as the rainy season crop and then groundnut, lentil, rapeseed and potato as the post-rainy season crops. Fertilization under the integrated nutrient management system and lifesaving irrigation at critical stages of each post-rainy season crop were provided. Results showed that the field water use efficiency values were 5.93, 2.39, 2.37 and 59.76 kg/(hm2.mm) and that the yield of these crops increased by approximately 20%, 34%, 40% and 20% after applying two lifesaving irrigations in groundnut, lentil, rapeseed and potato, respectively. Therefore, fallow paddy field can provide possible profitable crops during the post-rainy season by utilizing the residual moisture and minimum supplemental irrigation under improved nutrient management practices. 展开更多
关键词 RICE water-use efficiency post-rainy season crop integrated nutrient management yield net return
下载PDF
Tree-Ring Carbon Isotopic Constraints on Carbon-Water Exchanges between Atmosphere and Biosphere in Drought Regions in Northwestern China 被引量:1
15
作者 WANG Shilu WAN Guojiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期301-305,共5页
The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fract... The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised δ13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency. 展开更多
关键词 tree ring carbon isotope CO_(2) exchange water-use efficiency
下载PDF
Responses of water use efficiency to phenology in typical subtropical forest ecosystems——A case study in Zhejiang Province
16
作者 Fengsheng GUO Jiaxin JIN +2 位作者 Bin YONG Ying WANG Hong JIANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第1期145-156,共12页
Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abioti... Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abiotic and biotic factors have significant effects on WUE in forest ecosystems. However, responses of WUE to phenology in the context of climate change remain poorly understood. In this study, we analyzed the sensitivity and response patterns of seasonal WUE to phenology in Zhejiang Province where typical subtropical forest ecosystems are located, and discussed potential causes of the changes of the sensitivity and response patterns along different climate gradient during 2000–2014. The results of interannual partial correlation analysis showed widespread negative correlations between WUE and the start of growing season(SOS) in spring. This is because the increase in gross primary product(GPP) is larger than that of evapotranspiration(ET), resulting from an advanced SOS. The positive correlation between WUE and SOS was widely observed in summer mainly because of water stress and plant ecological strategy. The autumn WUE enhanced with the delay in the end of growing season(EOS)mainly because of the increase in GPP meanwhile the decrease or steadiness in ET, resulting from a delayed EOS. In space, the sensitivity of spring WUE to SOS significantly decreased along the radiation gradient, which might be related to strong soil evaporation in high radiation area;the sensitivity of WUE to SOS in summer showed a positive correlation with precipitation and a negative correlation with temperature, respectively, which might be attributed to the compensation of GPP to the delayed SOS and water stress caused by high temperature. The sensitivity of WUE to EOS increased significantly along the radiation and precipitation gradients in autumn, which may be because the increase of radiation and precipitation provides more water and energy for photosynthesis. 展开更多
关键词 water-use efficiency Gross primary product EVAPOTRANSPIRATION PHENOLOGY Climate gradient Forest
原文传递
Impacts of Small-Scale Water Management Interventions on Crop Yield, Water Use and Productivity in Two Agro-Ecologies of Malawi
17
作者 Davie M. Kadyampakeni Samson Kazombo-Phiri +1 位作者 Bancy Mati Isaac R. Fandika 《Agricultural Sciences》 2014年第5期454-465,共12页
A study was conducted in Malawi to compare the performance of improved agricultural water ma- nagement interventions with traditional water management practices to assess the impact of the interventions on crop yield ... A study was conducted in Malawi to compare the performance of improved agricultural water ma- nagement interventions with traditional water management practices to assess the impact of the interventions on crop yield and water use productivity. The study used questionnaires and focused group discussions to collect data from farmers and key informants. The results showed significant gains in crop yield, farmer income, and water use productivity using the regulated surface irrigation compared with unregulated surface irrigation. Treadle pump irrigation increased crop production by 5% - 54% compared with water can irrigation. Treadle pumps also increased gross and net incomes by >12% suggesting that farmers using the treadle pump were able to realize higher incomes across all crop enterprises compared with farmers using water cans. However, there is a dire need to improve the efficiency of the surface irrigation systems for rice production because the water applied was about 2 to 3 times the gross irrigation requirement (~10,780 m3·ha-1) which could result in environmental degradation through increased salinity and water logging. 展开更多
关键词 IRRIGATION SMALLHOLDER Agriculture Streamflow DIVERSION water-use efficiency
下载PDF
Spatiotemporal variability in tree ring's δ^(13)C of Picea crassifolia in the Qilian Mountains:climatic significance and responses to rising CO_2
18
作者 XiaoHong Liu WenLing An +4 位作者 ErYuan Liang WenZhi Wang XueMei Shao Lei Huang DaHe Qin 《Research in Cold and Arid Regions》 2011年第2期93-102,共10页
Abstract:The carbon isotopic composition (δ13C) of tree rings was used to assess changes in intrinsic water-use efficiency (Wi) to increasing atmospheric CO2 and climate change during the period of 1891–2003. F... Abstract:The carbon isotopic composition (δ13C) of tree rings was used to assess changes in intrinsic water-use efficiency (Wi) to increasing atmospheric CO2 and climate change during the period of 1891–2003. Five Qinghai spruce (Picea crassifolia) stands were selected in the Qilian Mountains, growing along a precipitation gradient. All five δ13C were correlated to each other, but two sites (DDS and CLS), which are far from the main body of the mountains, show relative weak connections to other sites. Although trees at all sites had improved their Wi in response to increasing atmospheric CO2 concentration, spruce growing in the regions far away from the main body of the mountains were less sensitive to improved Wi than those of other sites. Based on the correlation between carbon isotope discrimination (Δ) and Palmer Drought Severity Index (PDSI), the drought history covering the period of 1891–2003 was reconstructed in the study region. The two most severe drought epochs of the late 1920s and the last decade were caused by reduced precipitation and climate warming, respectively. Our results will be useful in assessing any further spatial climate-related bioclimatic information. 展开更多
关键词 Tree-ring δ13C intrinsic water-use efficiency drought history Picea crassifolia Qilian Motmtains
下载PDF
Patterns and drivers of seasonal water sources for artificial sand-fixing plants in the northeastern Mu Us sandy land,Northwest China
19
作者 Yanwu PEI Laiming HUANG +2 位作者 Ming'an SHAO Jiao WANG Yinglong ZHANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期63-77,共15页
Understanding plant water-use patterns is important for improving water-use efficiency and for sustainable vegetation restoration in arid and semi-arid regions. However, seasonal variations in water sources and their ... Understanding plant water-use patterns is important for improving water-use efficiency and for sustainable vegetation restoration in arid and semi-arid regions. However, seasonal variations in water sources and their control by different sand-fixing plants in water-limited desert ecosystems remain poorly understood. In this study, stable isotopic ratios of hydrogen(δ^(2)H) and oxygen(δ^(18)O) in precipitation, soil water, groundwater, and xylem water were determined to document seasonal changes in water uptake by three representative plant species(Pinus sylvestris var. mongolica Litv., Amygdalus pedunculata Pall., and Salix psammophila) in the northeastern Mu Us sandy land, Northwest China. Based on the depth distribution and temporal variation of measured gravimetric soil water content(SWC), the soil water profile of the three species stands was divided into active(0.01 g g^(-1)< SWC < 0.08 g g^(-1), 20%< coefficient of variation(CV) < 45%), stable(0.02 g g^(-1)< SWC < 0.05 g g^(-1), CV < 20%), and moist(0.08 g g^(-1)< SWC < 0.20 g g^(-1), CV >45%) layers. Annually, P. sylvestris, A. pedunculata, and S. psammophila obtained most water from deep(59.2%±9.7%, moist layer and groundwater),intermediate(57.4%±9.8%, stable and moist layers), and shallow(54.4%±10.5%, active and stable layers) sources, respectively. Seasonally, the three plant species absorbed more than 60% of their total water uptake from the moist layer and groundwater in the early(June) dry season;then, they switched to the active and stable layers in the rainy season(July–September) for water resources(50.1%–62.5%). In the late(October–November) dry season, P. sylvestris(54.5%–66.2%) and A. pedunculata(52.9%–63.6%) mainly used water from stable and moist layers, whereas S. psammophila(52.6%–70.7%) still extracted water predominantly from active and stable layers. Variations in the soil water profile induced by seasonal fluctuations in precipitation and groundwater levels and discrepancies in plant phenology, root distribution, and water demand are the main factors affecting the seasonal water-use patterns of artificial sand-fixing plants. Our study addresses the issue of plant water uptake with knowledge of proportional source-water use and reveals important implications for future vegetation restoration and water management in the Mu Us sandy land and similar desert regions around the world. 展开更多
关键词 desert ecosystem MixSIAR model plant water uptake soil moisture stable isotopes vegetation restoration water-use efficiency
原文传递
Iterative Model Predictive Control for Automatic Carrier Landing of Carrier-Based Aircrafts Under Complex Surroundings and Constraints
20
作者 ZHANG Xiaotian HE Defeng LIAO Fei 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期712-724,共13页
This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strateg... This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strategy with constraints is proposed for automatic landing control of the aircraft.First,the long short-term memory(LSTM)neural network is used to calculate the adaptive reference trajectories of the aircraft.Then the Sage-Husa adaptive Kalman filter and the disturbance observer are introduced to design the composite compensator.Second,an iterative optimization algorithm is presented to fast solve the receding horizon optimal control problem of MPC based on the Lagrange’s theory.Moreover,some sufficient conditions are derived to guarantee the stability of the landing system in a closed loop with the MPC.Finally,the simulation results of F/A-18A aircraft show that compared with the conventional MPC,the presented MPC strategy improves the computational efficiency by nearly 56%and satisfies the control performance requirements of carrier landing. 展开更多
关键词 automatic carrier landing model predictive control(MPC) long short-term memory(LSTM)neural network stability computational efficiency
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部