期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models
1
作者 Yang LI Yubao LIU +3 位作者 Rongfu SUN Fengxia GUO Xiaofeng XU Haixiang XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期887-899,共13页
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec... Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells. 展开更多
关键词 convection/lightning nowcasting multi-task learning geostationary satellite weather radar U-net model
下载PDF
Quantitative Applications of Weather Satellite Data for Nowcasting:Progress and Challenges 被引量:1
2
作者 Jun LI Jing ZHENG +13 位作者 Bo LI Min MIN Yanan LIU Chian-Yi LIU Zhenglong LI WPaul MENZEL Timothy J.SCHMIT John L.CINTINEO Scott LINDSTROM Scott BACHMEIER Yunheng XUE Yayu MA Di DI Han LIN 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期399-413,共15页
Monitoring and predicting highly localized weather events over a very short-term period,typically ranging from minutes to a few hours,are very important for decision makers and public action.Nowcasting these events us... Monitoring and predicting highly localized weather events over a very short-term period,typically ranging from minutes to a few hours,are very important for decision makers and public action.Nowcasting these events usually relies on radar observations through monitoring and extrapolation.With advanced high-resolution imaging and sounding observations from weather satellites,nowcasting can be enhanced by combining radar,satellite,and other data,while quantitative applications of those data for nowcasting are advanced through using machine learning techniques.Those applications include monitoring the location,impact area,intensity,water vapor,atmospheric instability,precipitation,physical properties,and optical properties of the severe storm at different stages(pre-convection,initiation,development,and decaying),identification of storm types(wind,snow,hail,etc.),and predicting the occurrence and evolution of the storm.Satellite observations can provide information on the environmental characteristics in the preconvection stage and are very useful for situational awareness and storm warning.This paper provides an overview of recent progress on quantitative applications of satellite data in nowcasting and its challenges,and future perspectives are also addressed and discussed. 展开更多
关键词 weather satellite quantitative applications nowcasting pre-convection
原文传递
Modelling the ZR Relationship of Precipitation Nowcasting Based on Deep Learning
3
作者 Jianbing Ma Xianghao Cui Nan Jiang 《Computers, Materials & Continua》 SCIE EI 2022年第7期1939-1949,共11页
Sudden precipitations may bring troubles or even huge harm to people’s daily lives.Hence a timely and accurate precipitation nowcasting is expected to be an indispensable part of our modern life.Traditionally,the rai... Sudden precipitations may bring troubles or even huge harm to people’s daily lives.Hence a timely and accurate precipitation nowcasting is expected to be an indispensable part of our modern life.Traditionally,the rainfall intensity estimation from weather radar is based on the relationship between radar reflectivity factor(Z)and rainfall rate(R),which is typically estimated by location-dependent experiential formula and arguably uncertain.Therefore,in this paper,we propose a deep learning-based method to model the ZR relation.To evaluate,we conducted our experiment with the Shenzhen precipitation dataset.We proposed a combined method of deep learning and the ZR relationship,and compared it with a traditional ZR equation,a ZR equation with its parameters estimated by the least square method,and a pure deep learning model.The experimental results show that our combined model performsmuch better than the equation-based ZRformula and has the similar performance with a pure deep learning nowcasting model,both for all level precipitation and heavy ones only. 展开更多
关键词 Deep learning METEOROLOGY precipitation nowcasting weather forecasting ZR formula
下载PDF
Identifying Possible Climate Change Signals Using Meteorological Parameters in Short-Term Fire Weather Variability for Russian Boreal Forest in the Republic of Sakha (Yakutia)
4
作者 Kiunnei Kirillina Wanglin Yan +1 位作者 Lynn Thiesmeyer Evgeny G. Shvetsov 《Open Journal of Forestry》 2020年第3期320-359,共40页
The Boreal forest is a terrestrial ecosystem highly vulnerable to the impacts of short-term climate and weather variabilities. Detecting abrupt, rapid climate-induced changes in fire weather and related changes in fir... The Boreal forest is a terrestrial ecosystem highly vulnerable to the impacts of short-term climate and weather variabilities. Detecting abrupt, rapid climate-induced changes in fire weather and related changes in fire seasonality can provide important insights to assessing impacts of climate change on forestry. This paper, taking the Sakha Republic of Russia as study area, aims to suggest an approach for detecting signals indicating climate-induced changes in fire weather to express recent fire weather variability by using short-term ranks of major meteorological parameters such as air temperature and atmospheric precipitation. Climate data from the “Global Summary of the Day Product” of NOAA (the United States National Oceanic and Atmospheric Administration) for 1996 to 2018 were used to investigate meteorological parameters that drive fire activity. The detection of the climate change signals is made through a 4-step analysis. First, we used descriptive statistics to grasp monthly, annual, seasonal and peak fire period characteristics of fire weather. Then we computed historical normals for WMO reference period, 1961-1990, and the most recent 30-year period for comparison with the current means. The variability of fire weather is analyzed using standard deviation, coefficient of variation, percentage departures from historical normals, percentage departures from the mean, and precipitation concentration index. Inconsistency and abrupt changes in the evolution of fire weather are assessed using homogeneity analysis whilst a Mann-Kendall test is used to detect significant trends in the time series. The results indicate a significant increase of temperature during spring and fall months, which extends the fire season and potentially contributes to increase of burned areas. We again detected a significant rainfall shortage in September which extended the fire season. Furthermore, this study suggests a new approach in statistical methods appropriate for the detection of climate change signals on fire weather variability using short-term climate ranks and evaluation of its impact on fire seasonality and activity. 展开更多
关键词 Boreal Forest Fires Climate Change Signal short-term Climate Variability Fire weather Hydrometeorological Trends
下载PDF
A convolutional recurrent neural network for strong convective rainfall nowcasting using weather radar data in Southeastern Brazil
5
作者 Angelica N.Caseri Leonardo Bacelar Lima Santos Stephan Stephany 《Artificial Intelligence in Geosciences》 2022年第1期8-13,共6页
Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predic... Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predict by standard meteorological numerical models.This work proposes the M5Images method for performing the very short-term prediction(nowcasting)of heavy convective rainfall using weather radar data by means of a convolutional recurrent neural network.The recurrent part of it is a Long Short-Term Memory(LSTM)neural network.Prediction tests were performed for the city and surroundings of Campinas,located in the Southeastern Brazil.The convolutional recurrent neural network was trained using time series of rainfall rate images derived from weather radar data for a selected set of heavy rainfall events.The attained pre-diction performance was better than that given by the persistence forecasting method for different prediction times. 展开更多
关键词 nowcasting Rainfall Extreme events weather radar Deep learning
下载PDF
MGCPN:An Efficient Deep Learning Model for Tibetan Plateau Precipitation Nowcasting Based on the IMERG Data
6
作者 Mingyue LU Zhiyu HUANG +4 位作者 Manzhu YU Hui LIU Caifen HE Chuanwei JIN Jingke ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期693-707,共15页
The sparse and uneven placement of rain gauges across the Tibetan Plateau(TP) impedes the acquisition of precise,high-resolution precipitation measurements,thus challenging the reliability of forecast data.To address ... The sparse and uneven placement of rain gauges across the Tibetan Plateau(TP) impedes the acquisition of precise,high-resolution precipitation measurements,thus challenging the reliability of forecast data.To address such a challenge,we introduce a model called Multisource Generative Adversarial Network-Convolutional Long Short-Term Memory(GAN-ConvLSTM) for Precipitation Nowcasting(MGCPN),which utilizes data products from the Integrated Multi-satellite Retrievals for global precipitation measurement(IMERG) data,offering high spatiotemporal resolution precipitation forecasts for upcoming periods ranging from 30 to 300 min.The results of our study confirm that the implementation of the MGCPN model successfully addresses the problem of underestimating and blurring precipitation results that often arise with increasing forecast time.This issue is a common challenge in precipitation forecasting models.Furthermore,we have used multisource spatiotemporal datasets with integrated geographic elements for training and prediction to improve model accuracy.The model demonstrates its competence in generating precise precipitation nowcasting with IMERG data,offering valuable support for precipitation research and forecasting in the TP region.The metrics results obtained from our study further emphasize the notable advantages of the MGCPN model;it outperforms the other considered models in the probability of detection(POD),critical success index,Heidke Skill Score,and mean absolute error,especially showing improvements in POD by approximately 33%,19%,and 8% compared to Convolutional Gated Recurrent Unit(ConvGRU),ConvLSTM,and small Attention-UNet(SmaAt-UNet) models. 展开更多
关键词 precipitation nowcasting Generative Adversarial Network-Convolutional Long short-term Memory(GAN-ConvLSTM)for Precipitation nowcasting(MGCPN) Integrated Multi-satellite Retrievals for globalprecipitation measurement(IMERG) deep learning Tibetan Plateau
原文传递
Analysis of Short-term Heavy Precipitations in a Regional Heavy Rainstorm in Shannxi Province
7
作者 王楠 《Agricultural Science & Technology》 CAS 2013年第3期411-416,共6页
[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanx... [Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanxi Province in late July 2010 as an example, data of five Doppler weather radars in Shaanxi Province were employed for a detailed analysis of the evolution of the heavy rainstorm pro- cess. [Result] Besides the good large-scale weather background conditions, the de- velopment and evolution of some mesoscale and small-scale weather systems direct- ly led to short-term heavy precipitations during the heavy rainstorm process, involv- ing the intrusion of moderate IS-scale weak cold air and presence of small-scale wind shear, convergence and adverse wind area. In addition, small-scale convection echoes were arranged in lines and formed a "train effect", which would also con- tribute to the generation of short-term heavy precipitation. [Conclusion] This study provided basic information for more clear and in-depth analysis of the formation mechanism of short-term heavy precipitations. 展开更多
关键词 short-term heavy precipitation Doppler weather radar Adverse wind area: Train effect
下载PDF
An Algorithm on Convective Weather Potential in the Early Rainy Season over the Pearl River Delta in China 被引量:2
8
作者 冯业荣 汪瑛 +1 位作者 彭涛涌 闫敬华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第1期101-110,共10页
This paper describes the procedure and methodology to formulate the convective weather potential (CWP) algorithm. The data used in the development of the algorithm are the radar echoes at 0.5° elevation from Gu... This paper describes the procedure and methodology to formulate the convective weather potential (CWP) algorithm. The data used in the development of the algorithm are the radar echoes at 0.5° elevation from Guangzhou Doppler Radar Station, surface observations from automatic weather stations (AWS) and outputs of numeric weather prediction (NWP) models. The procedure to develop the CWP algorithm consists of two steps: (1) identification of thunderstorm cells in accordance with specified statistical criteria; and (2) development of the algorithm based on multiple linear regression. The thunderstorm cells were automatically identified by radar echoes with intensity greater than or equal to 50 dB(Z) and of an area over 64 square kilometers. These cells are generally related to severe convective weather occurrences such as thunderstorm wind gusts, hail and tornados. In the development of the CWP algorithm, both echo- and environment-based predictors are used. The predictand is the probability of a thunderstorm cell to generate severe convective weather events. The predictor-predictand relationship is established through a stepwise multiple linear regression approach. Verification with an independent dataset shows that the CWP algorithm is skillful in detecting thunderstorm-related severe convective weather occurrences in the Pearl River Delta (PRD) region of South China. An example of a nowcasting case for a thunderstorm process is illustrated. 展开更多
关键词 convective weather potential nowcasting Doppler radar mesoscale numerical model
下载PDF
Analysis on a Severe Convective Weather Process of Guangxi in 2018
9
作者 Juan WANG Chao YIN Xianghong LI 《Meteorological and Environmental Research》 CAS 2020年第3期7-11,共5页
Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 wer... Based on conventional meteorological observation data and Doppler radar data,the occurrence and development mechanism of mixed severe convective weather and evolution of convective storm in Guangxi on March 4,2018 were analyzed. The results showed that the dry line was the main trigger mechanism of this severe convective weather. Instable convection stratification of cold advection at middle layer and warm advection at low layer and abundant water vapor from low-level jet provided favorable stratification and water vapor conditions for the occurrence and development of severe convection. Cold trough at middle layer,low pressure and strong vertical wind shear at middle and lower layers may be main factors for the development and maintenance of strong storm system. Squall line developed along ground convergence line,and there was bow echo on reflectivity factor chart. Moving velocity of convective system was quick,and there was gale core and velocity ambiguity on velocity map. 展开更多
关键词 short-term heavy rainfall Thunderstorm gale HAIL Severe convective weather
下载PDF
基于深度学习的高时空分辨率降水临近预报方法 被引量:3
10
作者 方巍 齐媚涵 《地球科学与环境学报》 CAS 北大核心 2023年第3期706-718,共13页
降水临近预报在强对流天气监测预警中具有重要地位,对于防灾减灾至关重要。在气象业务中,主要采用雷达回波外推方法解决高时空分辨率的临近预报问题。针对传统雷达回波外推方法中普遍存在的资料信息利用率不足和预报准确率低的问题,利... 降水临近预报在强对流天气监测预警中具有重要地位,对于防灾减灾至关重要。在气象业务中,主要采用雷达回波外推方法解决高时空分辨率的临近预报问题。针对传统雷达回波外推方法中普遍存在的资料信息利用率不足和预报准确率低的问题,利用上海地区多年的高时空分辨率天气雷达探测资料,基于数据驱动的深度学习方法进行雷达回波外推,提出了一种新的降水临近预报模型——SwinAt-UNet模型。该预报模型通过融合UNet模型和Swin Transformer结构捕捉历史天气雷达探测资料中的短期和长期动态变化特征,可以自适应地学习潜在的雷达回波生消演变规律。此外,为提高模型的泛化能力和预报准确率,引入深度可分离卷积和卷积块注意力模块。结果表明:在不同基本反射率阈值下,SwinAt-UNet模型的预报准确率均高于UNet、SmaAt-UNet、TransUNet和AA-TransUNet模型;在45 dBZ的基本反射率阈值下,SwinAt-UNet模型临界成功指数提高了13%,同时在预报时效上具有一定的优越性;SwinAt-UNet模型外推图像具有更加清晰的边缘和细节性纹理,对降水范围、移动方向和强度变化的预测更为准确。 展开更多
关键词 降水临近预报 强对流天气 深度学习 雷达回波外推 SwinAt-UNet模型 时空分辨率 天气雷达探测
下载PDF
基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究 被引量:3
11
作者 庄潇然 郑玉 +4 位作者 王亚强 康志明 闵锦忠 张文华 李杨 《气象学报》 CAS CSCD 北大核心 2023年第2期286-303,共18页
为了实现对中国东部地区极端强降水的临近预报、预警,基于具有物理约束功能的PhyDNet构建了融合雷达反射率因子和分钟级降水观测资料的融合降水临近预报模型PhyDNet-RP,预测江苏省及其上游地区未来3 h降水量,对比和探究了PhyDNet-RP、IN... 为了实现对中国东部地区极端强降水的临近预报、预警,基于具有物理约束功能的PhyDNet构建了融合雷达反射率因子和分钟级降水观测资料的融合降水临近预报模型PhyDNet-RP,预测江苏省及其上游地区未来3 h降水量,对比和探究了PhyDNet-RP、INCA(交叉相关外推+中尺度模式融合)、PhyDNet-P(仅包含降水资料)和UNet-RP(融合因子与PhyDNet-RP相同,但采用UNet模型)4种临近预报方法及对强降水增强过程的预测能力。结果表明:(1)与INCA相比,深度学习方法能更好地体现强降水增强过程的发展和演变,(2)对比PhyDNet-P和PhyDNet-RP模拟结果发现,在深度学习模型输入资料中增加雷达反射率因子可以更好地再现强降水区的形状和移动特征,(3)UNet-RP能够再现降水区的形状和移动,但不能定量降水强度。4种方法中,PhyDNet-RP预报效果最优,说明在模型输入资料中叠加具有不同功能属性的通道因子对预测效果具有正贡献,为深度学习的可解释性提供了一定支撑。 展开更多
关键词 降水临近预报 深度学习 天气雷达 雨量站 物理约束模型
下载PDF
基于机器学习技术的黄山风景区及周围雷电临近预报方法 被引量:2
12
作者 姚叶青 王传辉 +2 位作者 慕建利 张蕾 王丽娟 《气象科技》 2023年第5期747-754,共8页
为探究影响山岳型景区雷电发展的关键因素,实时掌握黄山风景区及周围雷电发展趋势,采用多普勒天气雷达、气象探空、闪电定位等多种监测数据,根据雷电发生基本物理原理,从系统强度、旺盛程度和移动趋势3个方面提取雷达回波特征作为关键... 为探究影响山岳型景区雷电发展的关键因素,实时掌握黄山风景区及周围雷电发展趋势,采用多普勒天气雷达、气象探空、闪电定位等多种监测数据,根据雷电发生基本物理原理,从系统强度、旺盛程度和移动趋势3个方面提取雷达回波特征作为关键预报因子,基于多种机器学习算法建立了雷电临近预报模型,结果表明:随机森林(RF)、逻辑回归(LR)、K-临近(KNN)、贝叶斯(GNB)、支持向量机(SVM)5种机器学习算法均对雷电具有一定临近预报能力,RF的TS最高,SVM漏报率最低,LR空报率最低;在RF算法中雷暴系统强度和发展旺盛程度两类因子起主要作用,其中作用最大的是雷暴系统强度中-20℃层高度雷达基本反射率,其次是0℃层以上回波厚度。 展开更多
关键词 雷电临近预报 随机森林 多普勒天气雷达 -20℃层雷达基本反射率 0℃层以上回波厚度
下载PDF
基于深度学习的短临降水预报综述 被引量:2
13
作者 马志峰 张浩 刘劼 《计算机工程与科学》 CSCD 北大核心 2023年第10期1731-1753,共23页
短临降水预报是指短期内降水的高分辨率预测,是一项重要但又困难的任务。在深度学习的背景下,它被视为一个基于雷达回波图的时空序列预测问题。降水预测是一个复杂的自我监督任务,由于运动总是在空间和时间维度上发生显著的变化,普通模... 短临降水预报是指短期内降水的高分辨率预测,是一项重要但又困难的任务。在深度学习的背景下,它被视为一个基于雷达回波图的时空序列预测问题。降水预测是一个复杂的自我监督任务,由于运动总是在空间和时间维度上发生显著的变化,普通模型难以应对复杂的非线性时空转换,导致预测模糊。因此,如何进一步提高模型预测性能减少模糊是该领域研究的重点。目前关于短临降水预报的研究仍处于早期阶段,并且对已有的研究工作缺乏系统性的分类和讨论。因此,有必要对该领域进行全面调研。从不同维度全面总结和分析了短临降水预报领域的相关知识,并给出了未来的研究方向,具体内容如下:(1)阐明了短临降水预报的重要意义以及传统预测模型的优缺点;(2)给出了短临降水预报问题的数学定义;(3)全面总结和分析了常见的预测模型;(4)介绍了不同国家和地区的多个开源雷达数据集;(5)简单介绍了用于预测质量评估的度量指标;(6)讨论了不同模型中所使用的不同的损失函数;(7)指明了未来短临降水预报领域的研究方向。 展开更多
关键词 短临降水预报 时空序列预测 天气预报 人工智能 深度学习
下载PDF
基于DBSCAN聚类的2σ闪电跃增算法应用
14
作者 田野 庞文静 +6 位作者 陈泽方 何娜 赵森 姬艳 郝睿 张天明 闫頔 《应用气象学报》 CSCD 北大核心 2023年第3期309-323,共15页
针对业务运行中雷达观测存在遮挡和雷达产品延迟,提出利用带噪声基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSC AN)算法对闪电数据的聚类结果替代雷达产品,并分别利用北京三维闪电定位网(Beiji... 针对业务运行中雷达观测存在遮挡和雷达产品延迟,提出利用带噪声基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSC AN)算法对闪电数据的聚类结果替代雷达产品,并分别利用北京三维闪电定位网(Beijing Total Lightning System,BJTLS)和升级后的国家闪电定位网(DDW1)总闪数据,应用2σ闪电跃增算法对北京2022年6月4日和12日两次强对流致灾过程进行临近预警,对比强对流单体识别法和DBSCAN聚类法的预警效果。结果表明:两种算法和两种闪电数据均能有效预警北京地区的灾害性天气,基于BJTLS总闪数据的预警效果较优;对于BJTLS总闪数据,两种方法的预警效果相当,预警命中率、误报率、临近成功指数和平均预警提前时间依次分别为100%,11.9%,88.1%,38.9 min和100%,13.3%,86.7%,42.8 min;仅利用闪电数据并应用2σ闪电跃增算法可对灾害性天气进行临近预警,摆脱对雷达产品的依赖。 展开更多
关键词 闪电定位 闪电跃增 DBSCAN聚类算法 灾害性天气 临近预警
下载PDF
基于CUDA的并行雷达拼图算法研究 被引量:2
15
作者 韩丰 高嵩 +1 位作者 薛峰 李月安 《气象》 CSCD 北大核心 2023年第10期1246-1253,共8页
雷达组网拼图算法是强对流天气短时临近预报系统(Severe Weather Automatic Nowcasting,SWAN)的重要基础方法之一。提高拼图算法的效率,不仅可以提升现有SWAN临近算法序列的时效性,也能更好地应用高分辨率雷达数据,具有重要的实际意义... 雷达组网拼图算法是强对流天气短时临近预报系统(Severe Weather Automatic Nowcasting,SWAN)的重要基础方法之一。提高拼图算法的效率,不仅可以提升现有SWAN临近算法序列的时效性,也能更好地应用高分辨率雷达数据,具有重要的实际意义。采用中央处理器(central processing unit,CPU)和图形处理器(graphics processing unit,GPU)混合架构设计并行雷达拼图算法,其中CPU负责雷达数据的解析和调度GPU并行模块,GPU负责大规模数据的并行计算。通过分析计算统一设备架构(compute unified device architecture,CUDA)算法的并行开销和拼图算法的特点,提出并实现了GPU内存管理优化和数据交换流程优化方案,提高了组网拼图算法的效率。对比试验结果表明,基于CUDA的GPU并行拼图算法和SWAN中30线程并行的CPU算法相比,在全国1 km和500 m分辨率的拼图任务上,加速比分别达到3.52和6.82。综上,基于CUDA的并行拼图算法不仅可以提高SWAN短时临近算法序列的时效性,也为更高分辨率雷达资料的拼图提供了技术支持。 展开更多
关键词 组网拼图 GPU并行 计算统一设备架构(CUDA) 强对流天气短时临近预报系统(SWAN)
下载PDF
降雨短时临近预报技术研究进展 被引量:1
16
作者 李皓轩 梅松军 +1 位作者 周康 包正铎 《中国防汛抗旱》 2023年第5期19-22,共4页
降雨预报在农业、水资源管理、城市规划和自然灾害预警等方面有着至关重要的作用,短时临近预报可以为实时决策提供更为有效的参考信息。对目前降雨短时临近预报的主要研究方法进行了总结,阐述了基于探测数据外推、数值模式、统计学习3... 降雨预报在农业、水资源管理、城市规划和自然灾害预警等方面有着至关重要的作用,短时临近预报可以为实时决策提供更为有效的参考信息。对目前降雨短时临近预报的主要研究方法进行了总结,阐述了基于探测数据外推、数值模式、统计学习3种常用方法的最新进展。基于探测数据外推的算法对于短时间和小范围内的降雨预报效果较好。数值模式强调物理过程,能全面分析和模拟大气环流场和降雨系统演变过程。机器学习技术的发展推动了基于统计学习的算法在降雨短时临近预报中的应用,具有广阔的应用前景。 展开更多
关键词 降雨短时临近预报 探测数据外推 数值模式 统计学习
下载PDF
雷达资料在现场气象保障服务中的应用分析
17
作者 赵斐 孔文甲 《科学技术创新》 2023年第9期41-44,共4页
2017年8月8日是内蒙古自治区成立70周年纪念日,此时正值内蒙古地区的主汛期,强对流天气高发;且大庆活动参观参演人数众多,现场气象服务工作非常艰巨,做好气象保障服务至关重要。本研究结合卫星云图等实况资料、地形影响以及高影响事件... 2017年8月8日是内蒙古自治区成立70周年纪念日,此时正值内蒙古地区的主汛期,强对流天气高发;且大庆活动参观参演人数众多,现场气象服务工作非常艰巨,做好气象保障服务至关重要。本研究结合卫星云图等实况资料、地形影响以及高影响事件开展了雷达资料在此次现场气象保障服务中的应用分析,归纳总结雷达资料在此种临近预报中的应用方法,为内蒙古地区现场气象保障服务提供更多的思路。 展开更多
关键词 雷达 强对流天气 临近预报 应用分析
下载PDF
天气雷达回波运动场估测及在降水临近预报中的应用 被引量:50
18
作者 张亚萍 程明虎 +2 位作者 夏文梅 崔哲虎 杨洪平 《气象学报》 CAS CSCD 北大核心 2006年第5期631-646,共16页
在常用的基于天气雷达反射率因子图像的相关方法跟踪回波运动的TREC(Tracking Radar Echo by Correla-tion)技术基础上,文中发展了一种基于差分图像(时间梯度图像)的相关方法追踪雷达回波运动(Difference Image-based Tracking Radar Ec... 在常用的基于天气雷达反射率因子图像的相关方法跟踪回波运动的TREC(Tracking Radar Echo by Correla-tion)技术基础上,文中发展了一种基于差分图像(时间梯度图像)的相关方法追踪雷达回波运动(Difference Image-based Tracking Radar Echo by Correlations)技术,简称DITREC,并与TREC技术进行比较。个例分析表明,DITREC矢量场消除了TREC矢量场中由于回波型的迅速变化导致的一些无序矢量,使得DITREC矢量场的时间连续性和空间连续性好于TREC矢量场。在TREC矢量场中不存在无序矢量的地方,DITREC矢量场与TREC矢量场基本一致。分别用DITREC矢量场和700 hPa风场作为回波运动估测场外推合肥CINRAD/SA雷达反射率因子复合扫描图,得到1 h外推降水场。以地面雨量计为标准,对外推降水场进行评估,结果表明,DITREC外推小时降水优于700 hPa外推小时降水,但其精度还与所采用的Z-R关系有关。 展开更多
关键词 天气雷达 回波运动场 降水 临近预报.
下载PDF
多普勒天气雷达径向速度图上的雹云特征 被引量:57
19
作者 王令 郑国光 +3 位作者 康玉霞 房文 卞素芬 许焕斌 《应用气象学报》 CSCD 北大核心 2006年第3期281-287,i0001,共8页
不同的强对流天气造成的灾害和社会影响差别很大。通过对北京地区2001年和2002年出现的32次降雹时伴随出现的天气现象分类和对雹云多普勒天气雷达径向速度场图像特征的分析统计,得出“大风区”、“中气旋”是经常出现降雹的多普勒径向... 不同的强对流天气造成的灾害和社会影响差别很大。通过对北京地区2001年和2002年出现的32次降雹时伴随出现的天气现象分类和对雹云多普勒天气雷达径向速度场图像特征的分析统计,得出“大风区”、“中气旋”是经常出现降雹的多普勒径向速度图像特征。“大风区”常伴随出现强风冰雹,而“中气旋”则常伴随出现暴雨冰雹,这对于判别冰雹云产生什么样的天气现象是有指示意义的。 展开更多
关键词 冰雹云 多普勒天气雷达 径向速度特征 临近预报
下载PDF
雷暴外流边界与郑州强对流天气 被引量:15
20
作者 张一平 牛淑贞 +1 位作者 席世平 吴民江 《气象》 CSCD 北大核心 2005年第8期54-57,F0003,共5页
利用2002~2004三年5~8月郑州714CD多普勒雷达回波资料,以90km内向郑州方向移动的回波强度Z≥50dBz、高度H≥9km的回波和郑州附近新生的50dBz以上强对流回波为研究对象,通过分析雷达回波,找出了雷暴外流边界和郑州强对流天气的关系,并... 利用2002~2004三年5~8月郑州714CD多普勒雷达回波资料,以90km内向郑州方向移动的回波强度Z≥50dBz、高度H≥9km的回波和郑州附近新生的50dBz以上强对流回波为研究对象,通过分析雷达回波,找出了雷暴外流边界和郑州强对流天气的关系,并和无外流边界出现的强回波对郑州天气的影响进行了对比,得出了对郑州强对流天气临近预报有意义的参考结论。 展开更多
关键词 外流边界 回波强度 强对流天气 郑州 边界 外流 雷暴 雷达回波资料 对流回波 临近预报
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部