期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Very Short-Term Generating Power Forecasting for Wind Power Generators Based on Time Series Analysis
1
作者 Atsushi Yona Tomonobu Senjyu +1 位作者 Funabashi Toshihisa Chul-Hwan Kim 《Smart Grid and Renewable Energy》 2013年第2期181-186,共6页
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont... In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN. 展开更多
关键词 Very short-term AHEAD forecasting wind power GENERATION wind SPEED forecasting Time Series Analysis
下载PDF
Very Short-term Spatial and Temporal Wind Power Forecasting: A Deep Learning Approach 被引量:6
2
作者 Tianyu Hu Wenchuan Wu +3 位作者 Qinglai Guo Hongbin Sun Libao Shi Xinwei Shen 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第2期434-443,共10页
In power systems that experience high penetration of wind power generation,very short-term wind power forecast is an important prerequisite for look-ahead power dispatch.Conventional univariate wind power forecasting ... In power systems that experience high penetration of wind power generation,very short-term wind power forecast is an important prerequisite for look-ahead power dispatch.Conventional univariate wind power forecasting methods at presentonly utilize individual wind farm historical data.However,studies have shown that forecasting accuracy canbe improved by exploring both spatial and temporal correlations among adjacent wind farms.Current research on spatial-temporal wind power forecasting is based on relatively shallow time series models that,to date,have demonstrated unsatisfactory performance.In this paper,a convolution operation is used to capture the spatial and temporal correlations among multiple wind farms.A novel convolution-based spatial-temporal wind power predictor(CSTWPP)is developed.Due to CSTWPP’s high nonlinearity and deep architecture,wind power variation features and regularities included in the historical data can be more effectively extracted.Furthermore,the online training of CSTWPP enables incremental learning,which makes CSTWPP non-stationary and in conformity with real scenarios.Graphics processing units(GPU)is used to speed up the training process,validating the developed CSTWPP for real-time application.Case studies on 28 adjacent wind farms are conducted to show that the proposed model can achieve superior performance on 5-30 minutes ahead wind power forecasts. 展开更多
关键词 Convolution neural network deep learning incremental learning short-term wind power forecast spatialtemporal correlation
原文传递
Short-Term Wind Power Prediction Method Based on Combination of Meteorological Features and CatBoost
3
作者 MOU Xingyu CHEN Hui +3 位作者 ZHANG Xinjing XU Xin YU Qingbo LI Yunfeng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第2期169-176,共8页
As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.... As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency. 展开更多
关键词 meteorological features short-term power load forecasting Cat Boost wind power
原文传递
基于VMD-SE和机器学习算法的短期风电功率多层级综合预测模型 被引量:28
4
作者 张亚超 刘开培 秦亮 《电网技术》 EI CSCD 北大核心 2016年第5期1334-1340,共7页
针对风电功率受自然环境变化影响,难以建立精确数学模型对其进行预测的问题,采用一种新型的可变模式分解(variational mode decomposition,VMD)技术,将原始风电功率序列分解为一系列有限带宽子模式以降低其不稳定性,根据子模式的样本熵(... 针对风电功率受自然环境变化影响,难以建立精确数学模型对其进行预测的问题,采用一种新型的可变模式分解(variational mode decomposition,VMD)技术,将原始风电功率序列分解为一系列有限带宽子模式以降低其不稳定性,根据子模式的样本熵(sample entropy,SE)分析其复杂度并重组得到子序列。在此基础上,结合3种不同的机器学习基模型,提出一种基于VMD-SE和基模型的自适应多层级综合预测模型,并采用一种基于混沌萤火虫结合仿真鸡群优化的智能算法,对其权重矩阵进行实时调整。仿真结果表明,基于VMD的组合模型较采用聚类经验模式分解时预测精度明显提高,且所提综合模型的预测精度较组合模型有了进一步的改善。因此,所提综合模型能有效提高短期风电功率多步预测的准确性。 展开更多
关键词 短期风电功率多步预测 可变模式分解 机器学习 仿生鸡群优化 多层级综合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部