In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
In power systems that experience high penetration of wind power generation,very short-term wind power forecast is an important prerequisite for look-ahead power dispatch.Conventional univariate wind power forecasting ...In power systems that experience high penetration of wind power generation,very short-term wind power forecast is an important prerequisite for look-ahead power dispatch.Conventional univariate wind power forecasting methods at presentonly utilize individual wind farm historical data.However,studies have shown that forecasting accuracy canbe improved by exploring both spatial and temporal correlations among adjacent wind farms.Current research on spatial-temporal wind power forecasting is based on relatively shallow time series models that,to date,have demonstrated unsatisfactory performance.In this paper,a convolution operation is used to capture the spatial and temporal correlations among multiple wind farms.A novel convolution-based spatial-temporal wind power predictor(CSTWPP)is developed.Due to CSTWPP’s high nonlinearity and deep architecture,wind power variation features and regularities included in the historical data can be more effectively extracted.Furthermore,the online training of CSTWPP enables incremental learning,which makes CSTWPP non-stationary and in conformity with real scenarios.Graphics processing units(GPU)is used to speed up the training process,validating the developed CSTWPP for real-time application.Case studies on 28 adjacent wind farms are conducted to show that the proposed model can achieve superior performance on 5-30 minutes ahead wind power forecasts.展开更多
As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy....As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.展开更多
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.
文摘In power systems that experience high penetration of wind power generation,very short-term wind power forecast is an important prerequisite for look-ahead power dispatch.Conventional univariate wind power forecasting methods at presentonly utilize individual wind farm historical data.However,studies have shown that forecasting accuracy canbe improved by exploring both spatial and temporal correlations among adjacent wind farms.Current research on spatial-temporal wind power forecasting is based on relatively shallow time series models that,to date,have demonstrated unsatisfactory performance.In this paper,a convolution operation is used to capture the spatial and temporal correlations among multiple wind farms.A novel convolution-based spatial-temporal wind power predictor(CSTWPP)is developed.Due to CSTWPP’s high nonlinearity and deep architecture,wind power variation features and regularities included in the historical data can be more effectively extracted.Furthermore,the online training of CSTWPP enables incremental learning,which makes CSTWPP non-stationary and in conformity with real scenarios.Graphics processing units(GPU)is used to speed up the training process,validating the developed CSTWPP for real-time application.Case studies on 28 adjacent wind farms are conducted to show that the proposed model can achieve superior performance on 5-30 minutes ahead wind power forecasts.
基金Supported by the National Science and Technology Basic Work Project of China Meteorological Administration(2005DKA31700-06)Innovation Fund of Public Meteorological Service Center of China Meteorological Administration(M2020013)。
文摘As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.