High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of ...High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.展开更多
Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ...Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.展开更多
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h...Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.展开更多
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ...Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.展开更多
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s...Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series...Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.展开更多
Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mo...Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and(long short-term memory)LSTM neural network is proposed and studied.First,the original data is prepossessed including removing outliers and filling in the gaps.Then,the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model.In addition,this study conducts seasonal classification of the annual data where ICEEMDAN is adopted to divide the original wind power sequence into numerous modal components according to different seasons.On this basis,sample entropy is used to calculate the complexity of each component and reconstruct them into trend components,oscillation components,and random components.Then,these three components are input into the LSTM neural network,respectively.Combined with the predicted values of the three components,the overall power prediction results are obtained.The simulation shows that ICEEMDAN-SE-LSTM achieves higher prediction accuracy ranging from 1.57%to 9.46%than other traditional models,which indicates the reliability and effectiveness of the proposed method for power prediction.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ...The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.展开更多
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m...The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China.展开更多
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces a...Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that forms a feature vector set from all IMFs and residue followed by a single kNN modelling and forecasting. These two configurations are compared with the persistent model and the conventional kNN model on a wind speed time series dataset from Singapore. The results show that the two EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has better performance than EMD-kNN-P for shorter term forecasting.展开更多
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the...Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the economic center of the circum-Bohai Sea,Tianjin exhibits a high demand for accurate wind forecasting.In this study,three machine learning algorithms were employed and compared as post-processing methods to correct wind speed forecasts by the Weather Research and Forecast(WRF)model for Tianjin.The results showed that the random forest(RF)achieved better performance in improving the forecasts because it substantially reduced the model bias at a lower computing cost,while the support vector machine(SVM)performed slightly worse(especially for stronger winds),but it required an approximately 15 times longer computing time.The back propagation(BP)neural network produced an average forecast significantly closer to the observed forecast but insufficiently reduced the RMSE.In regard to wind speed frequency forecasting,the RF method commendably corrected the forecasts of the frequency of moderate(force 3)wind speeds,while the BP method showed a desirable capability for correcting the forecasts of stronger(force>6)winds.In addition,the 10-m u and v components of wind(u_(10)and v_(10)),2-m relative humidity(RH_(2))and temperature(T_(2)),925-hPa u(u925),sea level pressure(SLP),and 500-hPa temperature(T_(500))were identified as the main factors leading to bias in wind speed forecasting by the WRF model in Tianjin,indicating the importance of local dynamical/thermodynamic processes in regulating the wind speed.This study demonstrates that the combination of numerical models and machine learning techniques has important implications for refined local wind forecasting.展开更多
In this paper, an overview of new and current developments in wind forecasting is given where the focus lies upon principles and practical implementations. High penetration of wind power in the electricity system prov...In this paper, an overview of new and current developments in wind forecasting is given where the focus lies upon principles and practical implementations. High penetration of wind power in the electricity system provides many challenges to the power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help the power system operators reduce the risk of unreliability of electricity supply. This paper gives a literature survey on the categories and major methods of wind forecasting. Based on the assessment of wind speed and power forecasting methods, the future development direction of wind forecasting is proposed.展开更多
The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this ...The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this mature technology is an important first step in the transition away from fossil fuels.This paper uses buoy and satellite observations of surface wind speed in the CS to estimate wind energy resources over the 2009–201911-year period and initiates hour-ahead forecasting using the long short-term memory(LSTM)network.Observations of wind power density(WPD)at the 100-m height showed a mean of approximately 1000 W/m^(2) in the Colombia Basin,though this value decreases radially to 600–800 W/m^(2) in the central CS to a minimum of approximately 250 W/m^(2) at its borders in the Venezuela Basin.The Caribbean Low-Level Jet(CLLJ)is also responsible for the waxing and waning of surface wind speed and as such,resource stability,though stable as estimated through monthly and seasonal coefficients of variation,is naturally governed by CLLJ activity.Using a commercially available offshore wind turbine,wind energy generation at four locations in the CS is estimated.Electricity production is greatest and most stable in the central CS than at either its eastern or western borders.Wind speed forecasts are also found to be more accurate at this location,and though technology currently restricts offshore wind turbines to shallow water,outward migration to and colonization of deeper water is an attractive option for energy exploitation.展开更多
In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during ...In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during the wintertime is evaluated.The performance of two postprocessing methods,including the decaying-averaging(DA)and analogy-based(AN)methods,is tested to calibrate the near-surface wind speed forecasts.It is found that great uncertainties exist in the model’s raw forecasts of the near-surface wind speed in Chongli.Improvement of the forecast accuracy due to refinement of the horizontal resolution from kilometer to subkilometer scale is limited and not systematic.The RT sites tend to have large bias and centered root mean square error(CRMSE)values and also exhibit notable underestimation of high-wind speeds,notable overestimation or underestimation of the near-surface wind speed at high altitudes,and notable underestimation during daytime.These problems are not resolved by increasing the horizontal resolution and are even exacerbated,which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition areas in Chongli.The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind speed.Both methods used in this study have comparable abilities in reducing the(positive or negative)bias,while the AN method is also capable of decreasing the random error reflected by CRMSE.In particular,the large biases for high-wind speeds,wind speeds at high-altitude stations,and wind speeds during the daytime at RT stations can be evidently reduced.展开更多
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw...Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.展开更多
It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series.In order to predict wind speed,authors propose a hybrid model which combines the wavelet transform...It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series.In order to predict wind speed,authors propose a hybrid model which combines the wavelet transform technique(WTT),the exponential smoothing(ES)method and the back propagation neural network(BPNN),and is termed as WTT-ES-BPNN.Firstly,WTT is applied to the raw wind speed series for removing the useless information.Secondly,the hybrid model integrating the ES method and the BPNN is used to forecast the de-noising data.Finally,the prediction of raw wind speed series is caught.Real data sets of daily mean wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model.Numerical results indicate that the WTT-ES-BPNN is an effective way to improve the accuracy of wind speed prediction.展开更多
文摘High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics.Randomness,intermittent and nonstationary usually cause the portion problem of the wind speed forecasting.Seasonal characteristics of wind speed means that its feature distribution is inconsistent.This typically results that the persistence of excitation for modeling can not be guaranteed,and may severely reduce the possibilities of high precise forecasting model.In this paper,we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed.(1)Wavelet analysis is used to extract the robust components of time series and reduce the influence of randomness.(2)Based on the energy distribution about the extracted amplitude and associated frequency,seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation.Thus,the original dataset is reasonably divided into subsest which can effectively reflect the seasonal distribution characteristics of wind speed.In addition,two strategies are given to optimal model structure and improve the forecasting accuracy:(1)The forecasting model’s lag space is approximately estimated by the Lipschitz quotient to improve the generality ability of the feedforward neural network.(2)The forecasting accuracy and model robustness are further improved by the wavelet decomposition combined with AdaBoosting neural network.Finally,experimental evaluation based on the dataset from National Renewable Energy Laboratory(NREL)is given to demonstrate the performance of the proposed approach.
基金the National Natural Science Foundation of China(42176243)。
文摘Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions.
文摘Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.
文摘Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.
文摘Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
文摘Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.
基金supported by Science and Technology Project of State Grid Shandong Electric Power Company(52062622000R,Research on Aggregation and Regulation Technology of Regional Integrated Energy System).
文摘Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and(long short-term memory)LSTM neural network is proposed and studied.First,the original data is prepossessed including removing outliers and filling in the gaps.Then,the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model.In addition,this study conducts seasonal classification of the annual data where ICEEMDAN is adopted to divide the original wind power sequence into numerous modal components according to different seasons.On this basis,sample entropy is used to calculate the complexity of each component and reconstruct them into trend components,oscillation components,and random components.Then,these three components are input into the LSTM neural network,respectively.Combined with the predicted values of the three components,the overall power prediction results are obtained.The simulation shows that ICEEMDAN-SE-LSTM achieves higher prediction accuracy ranging from 1.57%to 9.46%than other traditional models,which indicates the reliability and effectiveness of the proposed method for power prediction.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
文摘The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust.
文摘The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China.
文摘Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that forms a feature vector set from all IMFs and residue followed by a single kNN modelling and forecasting. These two configurations are compared with the persistent model and the conventional kNN model on a wind speed time series dataset from Singapore. The results show that the two EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has better performance than EMD-kNN-P for shorter term forecasting.
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.
基金Supported by the Open Project of Tianjin Key Laboratory of Oceanic Meteorology(2020TKLOMYB05)National Natural Science Foundation of China(42275191).
文摘Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the economic center of the circum-Bohai Sea,Tianjin exhibits a high demand for accurate wind forecasting.In this study,three machine learning algorithms were employed and compared as post-processing methods to correct wind speed forecasts by the Weather Research and Forecast(WRF)model for Tianjin.The results showed that the random forest(RF)achieved better performance in improving the forecasts because it substantially reduced the model bias at a lower computing cost,while the support vector machine(SVM)performed slightly worse(especially for stronger winds),but it required an approximately 15 times longer computing time.The back propagation(BP)neural network produced an average forecast significantly closer to the observed forecast but insufficiently reduced the RMSE.In regard to wind speed frequency forecasting,the RF method commendably corrected the forecasts of the frequency of moderate(force 3)wind speeds,while the BP method showed a desirable capability for correcting the forecasts of stronger(force>6)winds.In addition,the 10-m u and v components of wind(u_(10)and v_(10)),2-m relative humidity(RH_(2))and temperature(T_(2)),925-hPa u(u925),sea level pressure(SLP),and 500-hPa temperature(T_(500))were identified as the main factors leading to bias in wind speed forecasting by the WRF model in Tianjin,indicating the importance of local dynamical/thermodynamic processes in regulating the wind speed.This study demonstrates that the combination of numerical models and machine learning techniques has important implications for refined local wind forecasting.
文摘In this paper, an overview of new and current developments in wind forecasting is given where the focus lies upon principles and practical implementations. High penetration of wind power in the electricity system provides many challenges to the power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help the power system operators reduce the risk of unreliability of electricity supply. This paper gives a literature survey on the categories and major methods of wind forecasting. Based on the assessment of wind speed and power forecasting methods, the future development direction of wind forecasting is proposed.
文摘The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this mature technology is an important first step in the transition away from fossil fuels.This paper uses buoy and satellite observations of surface wind speed in the CS to estimate wind energy resources over the 2009–201911-year period and initiates hour-ahead forecasting using the long short-term memory(LSTM)network.Observations of wind power density(WPD)at the 100-m height showed a mean of approximately 1000 W/m^(2) in the Colombia Basin,though this value decreases radially to 600–800 W/m^(2) in the central CS to a minimum of approximately 250 W/m^(2) at its borders in the Venezuela Basin.The Caribbean Low-Level Jet(CLLJ)is also responsible for the waxing and waning of surface wind speed and as such,resource stability,though stable as estimated through monthly and seasonal coefficients of variation,is naturally governed by CLLJ activity.Using a commercially available offshore wind turbine,wind energy generation at four locations in the CS is estimated.Electricity production is greatest and most stable in the central CS than at either its eastern or western borders.Wind speed forecasts are also found to be more accurate at this location,and though technology currently restricts offshore wind turbines to shallow water,outward migration to and colonization of deeper water is an attractive option for energy exploitation.
基金the Strategic Pilot Science and Technology Special Program of the Chinese Academy of Sciences(Grant No.XDA17010105)the National Key Research and Development Project(Grant No.2018YFC1507104)+1 种基金the Key Scientific and Technology Research and Development Program of Jilin Province(Grant No.20180201035SF)the National Natural Science Foundation of China(Grant Nos.41875056,41775140,42075013 and 41575065).
文摘In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during the wintertime is evaluated.The performance of two postprocessing methods,including the decaying-averaging(DA)and analogy-based(AN)methods,is tested to calibrate the near-surface wind speed forecasts.It is found that great uncertainties exist in the model’s raw forecasts of the near-surface wind speed in Chongli.Improvement of the forecast accuracy due to refinement of the horizontal resolution from kilometer to subkilometer scale is limited and not systematic.The RT sites tend to have large bias and centered root mean square error(CRMSE)values and also exhibit notable underestimation of high-wind speeds,notable overestimation or underestimation of the near-surface wind speed at high altitudes,and notable underestimation during daytime.These problems are not resolved by increasing the horizontal resolution and are even exacerbated,which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition areas in Chongli.The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind speed.Both methods used in this study have comparable abilities in reducing the(positive or negative)bias,while the AN method is also capable of decreasing the random error reflected by CRMSE.In particular,the large biases for high-wind speeds,wind speeds at high-altitude stations,and wind speeds during the daytime at RT stations can be evidently reduced.
基金supported by the undergraduate training program for innovation and entrepreneurship of NUIST(XJDC202110300239).
文摘Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.
文摘It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series.In order to predict wind speed,authors propose a hybrid model which combines the wavelet transform technique(WTT),the exponential smoothing(ES)method and the back propagation neural network(BPNN),and is termed as WTT-ES-BPNN.Firstly,WTT is applied to the raw wind speed series for removing the useless information.Secondly,the hybrid model integrating the ES method and the BPNN is used to forecast the de-noising data.Finally,the prediction of raw wind speed series is caught.Real data sets of daily mean wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model.Numerical results indicate that the WTT-ES-BPNN is an effective way to improve the accuracy of wind speed prediction.