在噪声干扰较强的环境下,为了克服傅里叶分解方法(Fourier Decomposition Method,FDM)在分析调制信号及单独使用调制信号双谱(Modulated Signal Bispectrum,MSB)在分析非平稳信号方面的不足,提出了一种FDM和MSB相结合的滚动轴承故障诊...在噪声干扰较强的环境下,为了克服傅里叶分解方法(Fourier Decomposition Method,FDM)在分析调制信号及单独使用调制信号双谱(Modulated Signal Bispectrum,MSB)在分析非平稳信号方面的不足,提出了一种FDM和MSB相结合的滚动轴承故障诊断方法。首先,使用FDM按照高频到低频的方式搜寻傅里叶固有模态函数分量(Fourier Intrinsic band Functions,FIBFs);以加权峭度指标作为评判标准,对信号进行重构,确保得到最佳的信号;然后对新的信号利用MSB分析方法进行解调处理,最终通过复合切片谱实现故障特征频率的提取。最后,通过上述方法对模拟信号和滚动轴承外圈故障信号进行分析,其研究结果表明:该方法能够有效地提取故障特征频率,并且与常规双谱进行对比,验证所提方法的优越性。展开更多
Liuzhou City is located in Guangxi Zhuang Autonomous Region of China. It has a warm and rainy climate and belongs to the middle subtropical monsoon climate. It is a rainstorm and flood-prone area. The work of flood dr...Liuzhou City is located in Guangxi Zhuang Autonomous Region of China. It has a warm and rainy climate and belongs to the middle subtropical monsoon climate. It is a rainstorm and flood-prone area. The work of flood drainage and waterlogging prevention is very important. The “minute to minute” rainfall process data of Liuzhou National Meteorological Observation Station from 1975 to 2014 and the Pilgrim & Cordery method were used to estimate the short-time design rainstorm profile of Liuzhou City, and the profiles of the rainfall lasting for 30, 60, 90, 120, 150, and 180 min were obtained. The research shows that the same rain duration and different recurrence period conditions are consistent with the rainstorm profile. The rainfall duration of 30, 60, 90, 120, and 180 min generally shows single-peak rainstorm profile, and the rainfall duration of 150 min shows double-peak rainstorm profile. Most peaks of each short-time design rainstorm profile are at or ahead of the 1/3 part of the entire rainfall process. During the same recurrence period, the rainfall in peak period fluctuated with the increase of the duration, and the intensity of rainfall increased with the prolonging of the recurrence period.展开更多
采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm...采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm和0.026μm。在给定的0.05μm允差范围内,两种评估方法对直线度测量不确定度的评估均有效。统计检验采用了kolmogorov-smirnov检验法、jarque-bera检验法、normal probability plot图示法、偏度和峰度检验法。通过对两种不同定义直线度的测量模型进行统计检验分析发现,被测量分布函数与正态分布的峰度偏离是造成差异的主要原因。展开更多
频谱弥散(SMSP)干扰是一种针对线性调频(LFM)信号的相参压制干扰。根据SMSP干扰子脉冲的周期特性,提出了一种基于干扰重构和峭度最大化的干扰抑制方法。首先,利用自相关方法估计干扰子脉冲的周期,并根据干扰的产生原理确定子脉冲调频斜...频谱弥散(SMSP)干扰是一种针对线性调频(LFM)信号的相参压制干扰。根据SMSP干扰子脉冲的周期特性,提出了一种基于干扰重构和峭度最大化的干扰抑制方法。首先,利用自相关方法估计干扰子脉冲的周期,并根据干扰的产生原理确定子脉冲调频斜率,即可重构相位未知的干扰子脉冲;其次,对重构的干扰子脉冲分别设定不同的相位,并与接收信号做共轭相乘,根据相乘的结果确定干扰信号的初相位;最后,利用峭度最大化原理,确定干扰抑制因子,实现干扰抑制。仿真结果表明,本文方法能够有效实现干扰抑制,经过干扰抑制后的信干比可达20 d B以上,并且在存在噪声和相位误差的情况下,仍能够保持较高的信干噪比增益。展开更多
文摘在噪声干扰较强的环境下,为了克服傅里叶分解方法(Fourier Decomposition Method,FDM)在分析调制信号及单独使用调制信号双谱(Modulated Signal Bispectrum,MSB)在分析非平稳信号方面的不足,提出了一种FDM和MSB相结合的滚动轴承故障诊断方法。首先,使用FDM按照高频到低频的方式搜寻傅里叶固有模态函数分量(Fourier Intrinsic band Functions,FIBFs);以加权峭度指标作为评判标准,对信号进行重构,确保得到最佳的信号;然后对新的信号利用MSB分析方法进行解调处理,最终通过复合切片谱实现故障特征频率的提取。最后,通过上述方法对模拟信号和滚动轴承外圈故障信号进行分析,其研究结果表明:该方法能够有效地提取故障特征频率,并且与常规双谱进行对比,验证所提方法的优越性。
文摘Liuzhou City is located in Guangxi Zhuang Autonomous Region of China. It has a warm and rainy climate and belongs to the middle subtropical monsoon climate. It is a rainstorm and flood-prone area. The work of flood drainage and waterlogging prevention is very important. The “minute to minute” rainfall process data of Liuzhou National Meteorological Observation Station from 1975 to 2014 and the Pilgrim & Cordery method were used to estimate the short-time design rainstorm profile of Liuzhou City, and the profiles of the rainfall lasting for 30, 60, 90, 120, 150, and 180 min were obtained. The research shows that the same rain duration and different recurrence period conditions are consistent with the rainstorm profile. The rainfall duration of 30, 60, 90, 120, and 180 min generally shows single-peak rainstorm profile, and the rainfall duration of 150 min shows double-peak rainstorm profile. Most peaks of each short-time design rainstorm profile are at or ahead of the 1/3 part of the entire rainfall process. During the same recurrence period, the rainfall in peak period fluctuated with the increase of the duration, and the intensity of rainfall increased with the prolonging of the recurrence period.
文摘采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm和0.026μm。在给定的0.05μm允差范围内,两种评估方法对直线度测量不确定度的评估均有效。统计检验采用了kolmogorov-smirnov检验法、jarque-bera检验法、normal probability plot图示法、偏度和峰度检验法。通过对两种不同定义直线度的测量模型进行统计检验分析发现,被测量分布函数与正态分布的峰度偏离是造成差异的主要原因。
文摘频谱弥散(SMSP)干扰是一种针对线性调频(LFM)信号的相参压制干扰。根据SMSP干扰子脉冲的周期特性,提出了一种基于干扰重构和峭度最大化的干扰抑制方法。首先,利用自相关方法估计干扰子脉冲的周期,并根据干扰的产生原理确定子脉冲调频斜率,即可重构相位未知的干扰子脉冲;其次,对重构的干扰子脉冲分别设定不同的相位,并与接收信号做共轭相乘,根据相乘的结果确定干扰信号的初相位;最后,利用峭度最大化原理,确定干扰抑制因子,实现干扰抑制。仿真结果表明,本文方法能够有效实现干扰抑制,经过干扰抑制后的信干比可达20 d B以上,并且在存在噪声和相位误差的情况下,仍能够保持较高的信干噪比增益。