Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predi...Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.展开更多
According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is p...According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.展开更多
The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solutio...The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solution, as well as the qualitative analysis on the dynamic response of avibrating system. The concept of "optimum density" of the bottom-hinged flap is proposed, and its analytic expression is derived as well. The frequency interval in which the optimum density exists is also obtained. The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC. Some basic dynamic properties involving natural period, excitation moment, pitch amplitude, and optimum damping coefficient are analyzed and discussed in detail. In addition, this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters. The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s. Shallow water depth, large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture. In the sea state with water depth of 5.0 m and wave period of 5.0 s, the results of parametric optimization suggest a flap with the width of 8.0 m, thickness of 1.6 m, and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.展开更多
A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element...A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.展开更多
We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the ...We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.展开更多
The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under ...The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.展开更多
The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high...The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high airtightness cellular-metal shell,Using a four-stage Thermo Electric Cooler(TEC),320×256 Short Wave Infrared Focal Plane Cooling Detecto r available to operate at near room temperature(210K).Its main photoelectric performance are signal-to-noise ratio greater than 400,nonuniformity equivalent to 4.69%,operability equivalent to 99.76%,frame rate equivalent to 115Hz,component weight less than 150grams.展开更多
The added resistance of KVLCC2 in short and regular head waves has been studied theoretically and experimentally. Model tests are performed to determine how well the asymptotic formula (Faltinsen et al. 1980) predic...The added resistance of KVLCC2 in short and regular head waves has been studied theoretically and experimentally. Model tests are performed to determine how well the asymptotic formula (Faltinsen et al. 1980) predicts the typical level of added resistance in short waves. Because the asymptotic formula neglects the effects of ship motions, it is combined with theoretical methods to calculate the added resistance in long waves using an function to predict the added resistance in the intermediate wavelength region where both ship motions and wave reflection are important. A unique feature of this experiment is that the ship model is divided into three segments to explore the added resistance distribution with respect to hull segment. This paper discusses the sensitivity of experimental results to the quality of the incident regular head waves. Moreover, a novel procedure for analyzing added resistance is described. Finally, the experimentally determined added resistance of KVLCC2 is compared with theoretical results. It is shown that the added resistance from the combined theoretical methods agrees well with experimental results in both the intermediate and short wave regions. The use of hull segments shows that added resistance is concentrated primarily at the bow.展开更多
The Kortewegde Vries(KdV)equation represents the propagation of long waves in dispersive media,whereas the cubic nonlinear Schrödinger(CNLS)equation depicts the dynamics of narrow-bandwidth wave packets consistin...The Kortewegde Vries(KdV)equation represents the propagation of long waves in dispersive media,whereas the cubic nonlinear Schrödinger(CNLS)equation depicts the dynamics of narrow-bandwidth wave packets consisting of short dispersive waves.A model that couples these two equations seems in-triguing for simulating the interaction of long and short waves,which is important in many domains of applied sciences and engineering,and such a system has been investigated in recent decades.This work uses a modified Sardar sub-equation procedure to secure the soliton-type solutions of the generalized cubic nonlinear Schrödinger-Korteweg-de Vries system of equations.For various selections of arbitrary parameters in these solutions,the dynamic properties of some acquired solutions are represented graph-ically and analyzed.In particular,the dynamics of the bright solitons,dark solitons,mixed bright-dark solitons,W-shaped solitons,M-shaped solitons,periodic waves,and other soliton-type solutions.Our re-sults demonstrated that the proposed technique is highly efficient and effective for the aforementioned problems,as well as other nonlinear problems that may arise in the fields of mathematical physics and engineering.展开更多
We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details ...We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.展开更多
Investigated are effects of the total cloudiness and other factors on earth-atmosphere net radia- tion(EANR)and analyzed is its relation to other components and ground surface net radiation in the context of ERBE and ...Investigated are effects of the total cloudiness and other factors on earth-atmosphere net radia- tion(EANR)and analyzed is its relation to other components and ground surface net radiation in the context of ERBE and ISCCP.Evidence suggests that planetary scale albedo and earth-atmo- sphere short wave absorption radiation have maximum effect on the net radiation under study,with the influence of cloud and latitude displayed predominantly through the two factors;OLR has rela- tively weak effect;the earth-atmosphere net radiation is well correlated with surface net radiation. Analysis is also performed of the geographic distribution of the earth-atmosphere net radiation throughout China,and the annual curve of the net radiation on a local basis is marked by high (low)value in summer(winter)with the impact of factors.including total cloudiness responsible largely for the shift of the months with maximum.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51079032 the Outstanding Youth Science Foundation of Heilongjiang Province,No.200908
文摘Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.
文摘According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41206074 and 51205346)the Special Fund for Marine Renewable Energy (Grant Nos. GHME2011CX01 and GHME2011ZC05)
文摘The hydrodynamic performance of a bottom-hinged flap wave energy converter (WEC) is investigated through a frequency domain numerical model. The numerical model is verified through a two-dimensional analytic solution, as well as the qualitative analysis on the dynamic response of avibrating system. The concept of "optimum density" of the bottom-hinged flap is proposed, and its analytic expression is derived as well. The frequency interval in which the optimum density exists is also obtained. The analytic expression of the optimum linear damping coefficient is obtained by a bottom-hinged WEC. Some basic dynamic properties involving natural period, excitation moment, pitch amplitude, and optimum damping coefficient are analyzed and discussed in detail. In addition, this paper highlights the analysis of effects on the conversion performance of the device exerted by some important parameters. The results indicate that "the optimum linear damping period of 5.0 s" is the most ideal option in the short wave sea states with the wave period below 6.0 s. Shallow water depth, large flap thickness and low flap density are advised in the practical design of the device in short wave sea states in order to maximize power capture. In the sea state with water depth of 5.0 m and wave period of 5.0 s, the results of parametric optimization suggest a flap with the width of 8.0 m, thickness of 1.6 m, and with the density as little as possible when the optimum power take-off (PTO) damping coefficient is adopted.
文摘A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075032 and 10975031)
文摘We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.
文摘The wave transmission character of helical spring is applied to establish 2-DOF model of impacted vehicle on the wave impact theory. Considering the concrete structure of helical spring, corresponding responses under different impact frequency of the vehicle are imitated. The reason why the vehicle floor overresponds in some special frequency fields is explored based on analyzing the responses. When the impactions are in low frequency, the change of the spring has not been considered, but this does not affect the results. Because the transmission characters of velocity and acceleration are unanimous in helical spring, the responses characters of velocity and acceleration arc also unanimous, the only difference is the magnitude, which can make use of acceleration responses to analyse velocity responses.
文摘The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high airtightness cellular-metal shell,Using a four-stage Thermo Electric Cooler(TEC),320×256 Short Wave Infrared Focal Plane Cooling Detecto r available to operate at near room temperature(210K).Its main photoelectric performance are signal-to-noise ratio greater than 400,nonuniformity equivalent to 4.69%,operability equivalent to 99.76%,frame rate equivalent to 115Hz,component weight less than 150grams.
基金part of the research project SeaPro, which is sponsored by Rolls-Royce Marine and the Research Council of Norway
文摘The added resistance of KVLCC2 in short and regular head waves has been studied theoretically and experimentally. Model tests are performed to determine how well the asymptotic formula (Faltinsen et al. 1980) predicts the typical level of added resistance in short waves. Because the asymptotic formula neglects the effects of ship motions, it is combined with theoretical methods to calculate the added resistance in long waves using an function to predict the added resistance in the intermediate wavelength region where both ship motions and wave reflection are important. A unique feature of this experiment is that the ship model is divided into three segments to explore the added resistance distribution with respect to hull segment. This paper discusses the sensitivity of experimental results to the quality of the incident regular head waves. Moreover, a novel procedure for analyzing added resistance is described. Finally, the experimentally determined added resistance of KVLCC2 is compared with theoretical results. It is shown that the added resistance from the combined theoretical methods agrees well with experimental results in both the intermediate and short wave regions. The use of hull segments shows that added resistance is concentrated primarily at the bow.
文摘The Kortewegde Vries(KdV)equation represents the propagation of long waves in dispersive media,whereas the cubic nonlinear Schrödinger(CNLS)equation depicts the dynamics of narrow-bandwidth wave packets consisting of short dispersive waves.A model that couples these two equations seems in-triguing for simulating the interaction of long and short waves,which is important in many domains of applied sciences and engineering,and such a system has been investigated in recent decades.This work uses a modified Sardar sub-equation procedure to secure the soliton-type solutions of the generalized cubic nonlinear Schrödinger-Korteweg-de Vries system of equations.For various selections of arbitrary parameters in these solutions,the dynamic properties of some acquired solutions are represented graph-ically and analyzed.In particular,the dynamics of the bright solitons,dark solitons,mixed bright-dark solitons,W-shaped solitons,M-shaped solitons,periodic waves,and other soliton-type solutions.Our re-sults demonstrated that the proposed technique is highly efficient and effective for the aforementioned problems,as well as other nonlinear problems that may arise in the fields of mathematical physics and engineering.
基金supported by the NSF of China(Nos.11875040 and 11631007)。
文摘We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.
基金This work is sponsored by the National Natural Science Foundation of China.
文摘Investigated are effects of the total cloudiness and other factors on earth-atmosphere net radia- tion(EANR)and analyzed is its relation to other components and ground surface net radiation in the context of ERBE and ISCCP.Evidence suggests that planetary scale albedo and earth-atmo- sphere short wave absorption radiation have maximum effect on the net radiation under study,with the influence of cloud and latitude displayed predominantly through the two factors;OLR has rela- tively weak effect;the earth-atmosphere net radiation is well correlated with surface net radiation. Analysis is also performed of the geographic distribution of the earth-atmosphere net radiation throughout China,and the annual curve of the net radiation on a local basis is marked by high (low)value in summer(winter)with the impact of factors.including total cloudiness responsible largely for the shift of the months with maximum.