Bidirectional Dijkstra algorithm whose time complexity is 8O(n~2) is proposed. The theory foundation is that the classical Dijkstra algorithm has not any directional feature during searching the shortest path. The alg...Bidirectional Dijkstra algorithm whose time complexity is 8O(n~2) is proposed. The theory foundation is that the classical Dijkstra algorithm has not any directional feature during searching the shortest path. The algorithm takes advantage of the adjacent link and the mechanism of bidirectional search, that is, the algorithm processes the positive search from start point to destination point and the negative search from destination point to start point at the same time. Finally, combining with the practical application of route-planning algorithm in embedded real-time vehicle navigation system (ERTVNS), one example of its practical applications is given, analysis in theory and the experimental results show that compared with the Dijkstra algorithm, the new algorithm can reduce time complexity, and guarantee the searching precision, it satisfies the needs of ERTVNS.展开更多
Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network t...Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network towards more reliable, greener and in general more sustainable transportation modes in a potential world class university is proposed. “Smart mobility” in a smart city will significantly contribute to achieving the goal of a university becoming a world class university. In order to have a regular and reliable rail system on campus, we optimize the route among major stations on campus, using shortest path problem Dijkstra algorithm in conjunction with a computer software called LINDO to arrive at the optimal route. In particular, it is observed that the shortest path from the main entrance gate (Canaan land entrance gate) to the Electrical Engineering Department is of distance 0.805 km.展开更多
文摘Bidirectional Dijkstra algorithm whose time complexity is 8O(n~2) is proposed. The theory foundation is that the classical Dijkstra algorithm has not any directional feature during searching the shortest path. The algorithm takes advantage of the adjacent link and the mechanism of bidirectional search, that is, the algorithm processes the positive search from start point to destination point and the negative search from destination point to start point at the same time. Finally, combining with the practical application of route-planning algorithm in embedded real-time vehicle navigation system (ERTVNS), one example of its practical applications is given, analysis in theory and the experimental results show that compared with the Dijkstra algorithm, the new algorithm can reduce time complexity, and guarantee the searching precision, it satisfies the needs of ERTVNS.
文摘Nowadays, the development of “smart cities” with a high level of quality of life is becoming a prior challenge to be addressed. In this paper, promoting the model shift in railway transportation using tram network towards more reliable, greener and in general more sustainable transportation modes in a potential world class university is proposed. “Smart mobility” in a smart city will significantly contribute to achieving the goal of a university becoming a world class university. In order to have a regular and reliable rail system on campus, we optimize the route among major stations on campus, using shortest path problem Dijkstra algorithm in conjunction with a computer software called LINDO to arrive at the optimal route. In particular, it is observed that the shortest path from the main entrance gate (Canaan land entrance gate) to the Electrical Engineering Department is of distance 0.805 km.