In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces- shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Them...In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces- shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Thematic Mapper Plus (ETM+) on the basis of spectral features and distribution of surface targets with different water conditions in NIR-SWIR spectral space. The developed method is further explored with radiative transfer simulations using PROSPECT, Lillesaeter, SailH and 6S. It is evident from the results of validation derived from satellite synchronous field measurements that SPSI is highly correlated with FMC, coefficient of determination (R squared) and root mean square error are 0.79 and 26.41%. The paper concludes that SPSI has a potential in vegetation water content estimation in terms of FMC.展开更多
基金Supported by the Special Funds for the Major State Basic Research Project (973) (Grant No. G2000077900)the High-Tech Research and Development Program of China (Grant No. 2001AA135110)EAGLE (Exploitation of AnGular Effects in Land Surface Observation From Satellites in the Sixth Framework Program (FP6) of EU) (Grant No. SST3CT2003502057)
文摘In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces- shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Thematic Mapper Plus (ETM+) on the basis of spectral features and distribution of surface targets with different water conditions in NIR-SWIR spectral space. The developed method is further explored with radiative transfer simulations using PROSPECT, Lillesaeter, SailH and 6S. It is evident from the results of validation derived from satellite synchronous field measurements that SPSI is highly correlated with FMC, coefficient of determination (R squared) and root mean square error are 0.79 and 26.41%. The paper concludes that SPSI has a potential in vegetation water content estimation in terms of FMC.