期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Characteristics of Volcanic Rocks in the Shoshonite Province, Eastern China, and Their Metallogenesis 被引量:10
1
作者 Wang Dezi, Ren Qijiang, Qiu Jiansheng, Chen Kerong,Xu Zhaowen and Zeng Jiahu Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1996年第3期246-259,共14页
The shoshonite province in eastern China is characterized by extensive distribution (ca. 80000 km2) of Late Jurassic-Early Cretaceous (165-100 Ma) shoshonite series with subordinate high-K calc-alkali series. It was f... The shoshonite province in eastern China is characterized by extensive distribution (ca. 80000 km2) of Late Jurassic-Early Cretaceous (165-100 Ma) shoshonite series with subordinate high-K calc-alkali series. It was formed in a dominantly tensile stress field. In comparison with their analogues in island arcs and active continental margins in other countries, the volcanic rocks in the shoshonite province have their specific characteristics in petrology, mineralogy and geochemistry as well as related mineralization association, which are the comprehensive reflection of the special composition and structure of the mantle and crust of the province and the special Mesozoic regional tectonic setting. 展开更多
关键词 shoshonite PROVINCE regional tectonic setting isotopic composition mineralogical-petrological-geochemical CHARACTERISTICS eastern China
下载PDF
Metallogeny of Shoshonite-Hosted Copper-Gold Deposits in Middle-South Parts of Tancheng-Lujiang Deep Fault Zone and Its Vicinity, Eastern China 被引量:1
2
作者 Qiu Jiansheng Wang Dezi Ren Qijiang Department of Earth Sciences, Nanjing University, Nanjing 210093 Brent I. A. McInnes CSIRO Division of Exploration and Mining, PO Box 136, North Ryde, NSW 2113, Australia 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期51-54,共4页
INTRODUCTIONShoshonitesarepotassicigneousrockswhichoccurmain-lyinsubduction-relatedtectonicsettings(Morrison... INTRODUCTIONShoshonitesarepotassicigneousrockswhichoccurmain-lyinsubduction-relatedtectonicsettings(Morrison,1980).Theyarecom... 展开更多
关键词 shoshonitic volcanic rocks COPPER GOLD DEPOSITS metallogenic features EASTERN China.
下载PDF
Petrogenesis of the Late Eocene to Early Oligocene Yao'an Shoshonitic Complex,Southeastern Tibet:Partial Melting of an Ancient Continental Lithospheric Mantle beneath the Yangtze Block 被引量:1
3
作者 DONG Mengmeng YANG Tiannan +3 位作者 XUE Chuandong XIN Di LIANG Mingjuan YAN Qinggao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1657-1670,共14页
Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the C... Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC. 展开更多
关键词 Ancient continental lithospheric mantle Partial melting Yao’an Shoshonitic Complex Late Eocene to early Oligocene SE Tibetan Plateau
下载PDF
TWO TYPES OF XENOLITH—MANTLE XENOLITH AND CRUSTAL XENOLITH FOUND IN THE CENOZOIC VOLCANIC ROCKS FROM HOH XIL, NORTHERN TIBET PLATEAU 被引量:1
4
作者 Wu Cailai,Yang Jingsui,Li Haibing,Shi Rendeng 《地学前缘》 EI CAS CSCD 2000年第S1期197-198,共2页
It is known that large amounts of Cenozoic high potassium volcanic rocks occur on the Tibetan plateau. The question is where do those high potassium magmas come from? Since the plateau is being compressed by subductio... It is known that large amounts of Cenozoic high potassium volcanic rocks occur on the Tibetan plateau. The question is where do those high potassium magmas come from? Since the plateau is being compressed by subduction and collision from the surrounding continents,it is a puzzle for us what is the formational environment and tectonic setting of these volcanic rocks? In particular,what is the relationship between these special rocks and formation and uplift of the plateau? We recently carried out an investigation on these Cenozoic volcanic rocks in Hoh Xil,northern Tibetan plateau,including volcanic rocks in the Jingyuhu,Xiongyingtai and Shuangquanzi areas. In the region,some older lava flows occur as thick sheets with a flat surface and weathering crust; while some relatively younger lavas remain a relict volcanic cone or vent. Most of the relict cones are small (<100m in diameter) and some are over hundred meters,distributed along faults,particular strike\|slip fault,e.g.,East Kunlun strike slip fault. Relatively,intermediate\|acid volcanic rocks are prominent,and basic\|intermediate and acid are subordinate. Petrological and geochemical results show that these volcanic rocks have many common affinities,characterized by high contents of w (K 2O)+ w (Na 2O) (about 8%),and w (K\-2O)/ w (Na\-2O)>1 or close to 1,and mostly belonged to shoshonite\|trachyte association and some to ultra\|potassic rocks. The K\|Ar dating of whole rock and mica shows that the volcanism lasts from middle Miocene (15 47Ma) to Pleistocene (0 69Ma); they are 0 69Ma,13 77Ma and 15 47Ma in Jingyuhu; 11 05Ma,12 22Ma and 12 83Ma in Xiongyingai,; 1 58Ma,2 24Ma,5 23Ma,5 85Ma,8 20Ma,8 41Ma and 10 67Ma in Shuangquanzi.Two types of xenolith and xenocryst were found in Jingyuhu and Xiongyingtai,i.e..,crustal xenolith and mantle xenocryst. 展开更多
关键词 XENOLITH XENOCRYST shoshonite TRACHYTE CENOZOIC volcanic r ock Tibet Hoh Xil
下载PDF
GEOCHEMISTRY OF THE PLIOCENE SHOSHONITIC ROCKS FROM OIYUG BASIN, CENTRAL TIBET 被引量:2
5
作者 Zhao Zhidan, Mo Xuanxue, Zhang Shuangquan, Guo Tieying, Zhou Su 《地学前缘》 EI CAS CSCD 2000年第S1期107-108,共2页
Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But ... Cenozoic volcanism has been well studied in northern, eastern and southwestern Tibet (Coulon et al., 1986; Arnund et al., 1992; Turner et al., 1993, 1996; Deng, 1978, 1998; Miller et al., 1999, Wang et al, 2000). But the data of the Cenozoic post\|collisional volcanism in central and southern Tibet is limited (Coulon et al., 1986; Turner et al., 1996; Zhang, 1998). These potassic and ultrapotassic intrusive and extrusive rocks are regarded to be a key clue for the deep lithospheric process of the plateau after Indo\|Asian collision. Present here is the preliminary results of the rocks from Oiyug (Wuyu) basin, about 150km northeast to Shigatse. Major and trace elements of the rocks are studied and compared with the ultrapotassic and potassic (shoshonitic) rocks exposed in Lhasa block and Qiangtang terrane.(1) Geologic setting. The magmatic rocks studied are Gazacun formation of the lower part of the Pliocene Oiyug group (N 2 oy ). The cross\|section is situated in Gazacun village of Namling. Gazacun formation is underlain unconformable by the andesitic rocks of Linzizong Group [(K 2—E 2) ln ], and covered by the coarse\|grain layered sandstone and conglomerate of Zongdangcun formation. The Gazacun formation consists of mediate\|acidic volcanics, granite\|porphyry, coal\|bearing clastics, plants and sporo\|pollen. 展开更多
关键词 shoshonitic ROCKS GEOCHEMISTRY Oiyug BASIN TIBET
下载PDF
Geochemistry and Emplacement of Post-collisional Shoshonitic Dyke Swarms, NW of Iran 被引量:2
6
作者 A.Jahangiri M.Fadaeian A.Songjian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期99-,共1页
About 300 mafic dykes are intruded Eocene volcanic and pyroclastic rocks,north east of Meshkinshahr city in the NW of Iran.Most of dyke swarms display NNE-SSE trend.Their composition varies from basalt to tephrite
关键词 Geochemistry and Emplacement of Post-collisional Shoshonitic Dyke Swarms NW of Iran
下载PDF
Geological Implications for the Deep-Derived Mafic Enclaves from Cenozoic Shoshonitic Rocks in Jianchuan-Dali Area, West Yunnan 被引量:1
7
作者 王建 李建平 +1 位作者 王江海 马志红 《Chinese Journal Of Geochemistry》 EI CAS 2003年第1期58-73,共16页
There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral stri... There exist intermediate to intermediate-acid shoshonitic rocks dated at 26.3- 36.7Ma in the Early Tertiary extensional basins along the NE flank of the Dali-Jianchuan section of the Honghe-Ailaoshan left-lateral strike-slip ductile shear zone, where some high- and medium-high grade metamorphosed mafic enclaves have been found. According to the P-T conditions and mineral assemblage characteristics, the enclaves are grouped into three types: type-Ⅰ, garnet diopsidite, formed at lower crust or in the transitional section between the mantle and the crust with the metamorphic condition P=(10.47-11.51)×108 Pa and T=771-932℃; type-Ⅱ, garnet- and diopside-bearing amphibolite, formed at the depth of middle to lower crust with the metamorphic condition: P=(6-10) ×108 Pa and T=780-830℃; type-Ⅲ, metamorphosed gabbro, formed at relatively higher levels than the above 2 types with lower metamorphic condition. Type-Ⅰand type-Ⅱenclaves had experienced a decompressional retrograde metamorphism caused by tectonic elevation associated with the metasomatism of SiO 2, Na 2O-rich fluid phase with the new equilibrated temperature at T=761-778℃. Geochemical evidence indicates that both deep-derived mafic enclaves and host rocks have similar EM Ⅱ properties, which are related to the involvement of subducted materials. The sustaining subduction, compression and strike-slip ductile shearing between the India plate and the Yangtze craton are the main constraints on the subcontinental mantle properties, interaction between crust and mantle, and the formation and evolution of alkali-rich magma. 展开更多
关键词 shoshonitic rock 矿物地球化学特征 变质作用 新生代 地质学特征 云南 铁镁质岩 变质岩
下载PDF
Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process 被引量:42
8
作者 王强 许继峰 +2 位作者 赵振华 熊小林 包志伟 《Science China Earth Sciences》 SCIE EI CAS 2003年第8期801-815,共15页
Petrology, element and isotopic geochemistry of the Mesozoic intrusive rocks in the Tongling area were systematically investigated in this study. The intrusive rocks can be divided into two groups, one contains shosho... Petrology, element and isotopic geochemistry of the Mesozoic intrusive rocks in the Tongling area were systematically investigated in this study. The intrusive rocks can be divided into two groups, one contains shoshonitic rocks with SiO2≤55%, the other consists mainly of high-potassic calc-alkaline rocks with SiO2>55%. The shoshonitic rocks (SiO2≤55%) were generated by the fractional crystallization of the primary basaltic magma sourced from an enriched mantle, then the evolved basaltic magma likely experienced low-degree contamination with the lower crust materials when they ascended. On the other hand, although the intrusive rocks with SiO2>55% show most elemental geochemical characteristics similar to an adakite, such as high Na2O, Al2O3, Sr contents, high Sr/Y and La/Yb ratios, they have isotopic compositions much different from an adakite, such as low e Nd(t) (-9.16—16.55) and high (87Sr/86Sr)i (0.7068—0.7105), and some of them show relatively high Y and Yb contents than those of an adakite. We propose that the intrusive rocks with SiO2>55% were most probably produced by mixing of the mantle-derived basaltic magma and adakite-like magma derived from the melting of basaltic lower crust that was heated by the underplating mantle-derived shoshonitic magmas. The delamination of lower crust likely took place after or during the formation of these adakite-like rocks in the Tongling area. 展开更多
关键词 MAGMA mixing adakite underplating delamination shoshonite Tongling.
原文传递
The shoshonitic volcanic rocks at Hongliuxia:Pulses of the Altyn Tagh fault in Cretaceous? 被引量:8
9
作者 杨经绥 孟繁聪 +1 位作者 张建新 李海兵 《Science China Earth Sciences》 SCIE EI CAS 2001年第S1期94-102,共9页
Two periods of magma activities, i.e. 106-112 Ma shoshonitic eruption and 82 Ma trachytic intrusion, are recognized at the intersection of the Altyn Tagh fault and the northern marginal fault of the Qilian terrane, no... Two periods of magma activities, i.e. 106-112 Ma shoshonitic eruption and 82 Ma trachytic intrusion, are recognized at the intersection of the Altyn Tagh fault and the northern marginal fault of the Qilian terrane, northeast of the Tibetan Plateau, which were previously considered to be Quaternary magma activities. The two rock-types have significant differences in mineral assemblage and chemical composition, and formed during two different pulses of magma activity. The Cretaceous magma activities and deformation in or near the Altyn Tagh fault zone suggest a possibly tectonic reactivation after the intense activity of the fault during Indusinian. 展开更多
关键词 : shoshonite CRETACEOUS Hongliuxia Altyn Tagh FAULT TIBETAN Plateau.
原文传递
Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry 被引量:32
10
作者 LI Xianhua ZHOU Hanwen +3 位作者 LIU Ying LEE Chi-yu SUN Min CHEN Chenhong 《Chinese Science Bulletin》 SCIE EI CAS 2000年第7期653-659,共7页
A NE-direction Mesozoic shoshonitic intrusive s黫te in SE Guangxi has been identified in terms of geological, petrological and geochemical investigations. The shoshonitic intrusives are characterized by enrichment of ... A NE-direction Mesozoic shoshonitic intrusive s黫te in SE Guangxi has been identified in terms of geological, petrological and geochemical investigations. The shoshonitic intrusives are characterized by enrichment of LILE, HFSE and LREE and no obvious Nb-Ta depletion, similar to those potassic rocks formed in within-plate and rifting environments. Unlike most shoshonitic rocks forming in arc settings, the SE Guangxi shoshonitic intrusives were likely generated during regional lithosphere extension induced by upwelling of asthenosphere mantle. 展开更多
关键词 shoshonitic ROCKS PETROLOGY element GEOCHEMISTRY Guangxi.
原文传递
Post-collisional magmatism in Wuyu basin,central Tibet:evidence for recycling of subducted Tethyan oceanic crust 被引量:14
11
作者 赵志丹 莫宣学 +4 位作者 张双全 郭铁鹰 周肃 董国臣 王勇 《Science China Earth Sciences》 SCIE EI CAS 2001年第S1期27-34,共8页
The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomali... The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism. 展开更多
关键词 : TIBET Wuyu BASIN POST-COLLISION shoshonitic ROCKS geochemistry.
原文传递
Isotopic characteristics of shoshonitic rocks in eastern Qinghai-Tibet Plateau: Petrogenesis and its tectonic implication 被引量:8
12
作者 张玉泉 谢应雯 +6 位作者 李献华 邱华宁 梁华英 李建平 赵振华 邓万明 钟孙霖 《Science China Earth Sciences》 SCIE EI CAS 2001年第1期1-6,共6页
The Cenozoic magmatic rocks of shoshonitic series in the easternQinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these di... The Cenozoic magmatic rocks of shoshonitic series in the easternQinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau. 展开更多
关键词 isotopic characteristics magmatic rocks shoshonitic series eastern Qinghai-Tibet Plateau.
原文传递
Alkali-rich igneous rocks and related Au and Cu large and superlarge deposits in China 被引量:2
13
作者 赵振华 熊小林 +4 位作者 王强 包志伟 张玉泉 谢应雯 任双奎 《Science China Earth Sciences》 SCIE EI CAS 2003年第z1期1-13,共13页
The alkali-rich igneous rocks in China occur as fifteen linear distributed belts of each extending several hundreds to several thousands kilometers in length. These include most types of alkali-rich igneous rock categ... The alkali-rich igneous rocks in China occur as fifteen linear distributed belts of each extending several hundreds to several thousands kilometers in length. These include most types of alkali-rich igneous rock categories discovered worldwide. The related Au, Cu large and superlarge deposits or metallogenic focus-areas include Dongping, Guilaizhuang, Yulong, etc. Direct and indirect genetic links have been found between alkali-rich igneous rocks and Au, Cu mineralization. The petrogenesis and metallogenesis of the alkali-rich igneous rocks are mainly controlled by (1) mantle enrichment, (2) strong interaction between mantle and crust, (3) lower contens of sulfur, high and high contents of volatiles, (4) the significant turn of regional tectonic framework from compress to extension and (5) the strong change of regional lithosphere structure. 展开更多
关键词 alkali-rich IGNEOUS rocks shoshonitic series rocks LARGE and SUPERLARGE AU and cupper deposits.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部