Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d...Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.展开更多
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu...We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete.展开更多
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi...Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings.展开更多
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on...When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simulation technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placement first and then prestress-tensioning is proposed.展开更多
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ...When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.展开更多
Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesse...Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesses are considered to reduce the high-frequency-oscillation effect and achieve a nearly constant strain rate over a certain deformation range. It is known that the compressive strength of concrete-like materials is hydrostatic-stress-dependent, and the apparent dynamic strength enhancement comes from both the effects of the hydrostatic stress and strain rate. In order to differentiate them, numerical method is used to calculate the contribution of the hydrostatic stress, and then the genuine strain-rate effect on dynamic compressive strength of RPCs is determined. In addition, the effect of steel-fibers on dynamic strength and failure mode of RPCs is discussed.展开更多
In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a ...In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.展开更多
The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggrega...The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.展开更多
We examined the applicability of the pumice aggregate on the concrete formed by considering the reactive powder concrete mixture ratios, for the rigid superstructure concrete road pavement and building construction. T...We examined the applicability of the pumice aggregate on the concrete formed by considering the reactive powder concrete mixture ratios, for the rigid superstructure concrete road pavement and building construction. The natural pumice aggregate in fibrous and non-fibrous concrete samples was used in the production of concrete by fracturing in 0.1-0.6 mm dimensions in rotor mill. The concreted formed in this way is named after the pumice powder concrete(PPC). The PPC samples produced were taken 7 days as 20 ℃ standard water cure, 28 days as 20 ℃ standard cure and 9 different types of combined cures. The combined cures were applied different temperatures in different durations. PPC samples were subjected to some pressure and flexural tests at the end of the standard water and combined cures. The highest compressive and flexural strengths of PPC samples were obtained after the combined cures: 3 days in 20 ℃ as standard water curing + 2 days in 180 ℃ in drying-oven. The highest compressive strength of PPC samples without any fiber was found to be 47.27 MPa, as for the highest flexural strength, it is found to be 5.23 MPa, in the end of the study. The highest compressive strength of fibrous PPC samples was 51.12 MPa, while flexural strength was 6.57 MPa.展开更多
In this work, linear and mass attenuation coefficients, half and tenth-value layers, effective atomic number and electron density of different types of concretes were determined at 316.51, 468.07, 511, 662, 1173 and 1...In this work, linear and mass attenuation coefficients, half and tenth-value layers, effective atomic number and electron density of different types of concretes were determined at 316.51, 468.07, 511, 662, 1173 and 1332 keV using MCNP-4C code and Win XCom programs. The MCNP-4C and Win XCom results agreed well with each other, with differences of \±1.9%. The results agreed with available experimental data, too, with differences of \±6%.The MCNP-4C results showed better agreement with the experimental data than the Win XCom results. Also, it was found that the effective electron density of studied concretes varies in the range of(2.83–3.2) 9 10^(23)electron/g.展开更多
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra...Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.展开更多
An important problem facing stress-strain response modeling of concrete is the complexity of the compressive strength grades. 21 groups of speeimens with different cubic compressive strength (56.3- 164.9 MPa ) hate ...An important problem facing stress-strain response modeling of concrete is the complexity of the compressive strength grades. 21 groups of speeimens with different cubic compressive strength (56.3- 164.9 MPa ) hate beets numerically analyzed. Using only the compressive strength, a stress-strain response model of different concrete grade was established. The numerical simulation model not only qualitatively reproduces the relationship of uniaxial compressive strength, peak value stress and cubic compressive strength, but realizes the consistence of the ascending branch of stress-strain cunts with different strength grades by introducing the correction coefficient k. The results indicate k increases gradually from 0 to approximate 1 with the increase of the compressive strength, corresponding to the transition from the paracurve to straight line branch in stress-strain curves. When k is 0, the madel is identical to the Hognestad equation. A good agreement with the experiment data was obtained.展开更多
In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggre...In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggregates were proposed. First, different kinds of mathematical models for the basic properties (compressive strength, water retention rate, and consistency loss) of RAM with two kinds of admixtures, thickening powders (TP) and self-made powdery admixtures (SSCT) designed for RAM, and the replacement rates were established, while the average relative errors and relative standard errors of these models were calculated. Additionally, the models and their error analyses for the curves of drying shrinkage and curing time of RAM + SSCT at different replacement rates were put forward. The results show that polynomial functions should be used to calculate the basic properties of RAM + TP and RAM + SSCT at different replacement rates. In addition, polynonfial functions are the most optimal models for the sharp shrinkage sections in the curves of drying shrinkage-curing time of RAM + SSCT, while exponential functions should be used as the models for the slow shrinkage sections and steady shrinkage sections.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p...Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.展开更多
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the e...In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.展开更多
In this paper waste expanded polystyrene (EPS) granulated in various proportions was added to cement and lime paste and samples were produced in order to provide heat and voice insulation and produce low-intensity con...In this paper waste expanded polystyrene (EPS) granulated in various proportions was added to cement and lime paste and samples were produced in order to provide heat and voice insulation and produce low-intensity concrete. Styropor, which is especially obtained as waste material in packaging industry, is used in production of samples;the purpose here was to prevent environmental pollution and produce construction material with variable cost. Hot wire method was used for measuring the thermal conductivity of the sample. A mould with the dimensions of 20 × 60 × 150 mm was prepared for thermal experiments and 100 × 100 × 100 mm was prepared for mechanical experiments and the mortars were cast. The samples were subjected to thermal conductivity, pressure and tensile strength and water absorption tests. The diameter of the EPS ranged from 0 to 6 mm and concrete involvement rate was determined as to be 0 to 70 percentages. As a result, it has been found out that in EPS-containing cement and lime binding-agent materials can be used for the following purposes: (i) production of earthquake-proof low-intensity concrete, (ii) as insulation-purpose construction material, (iii) decoration.展开更多
The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more availa...The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more available with a subsequent increased interest in their properties because they develop initial strength during a heat up of the units within 8-10 h, in contrast to 24 h after placement for high Al_2O_3 cements(HAC). This strength development enables high temperature processing units to be relined with minimum turnaround time, thus providing a favored cost/performance ratio. The present paper identifies the predominant phosphate phases responsible for developing good mechanical-strength properties of zirconia and alumina concretes bonded with mechano-chemical binders. It sets out the colloid and crystalline phases resulted from interphase interaction that provide the basis for high concentrated bonding suspensions(HCBS) technology useful to the refractory industry.展开更多
基金supported by the National Natural Science Foundation of China[Grant Nos.51938011 and 51908405]Australian Research Council。
文摘Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.
基金Funded by the National Natural Science Foundation of China(Nos.U23A20672,52171270,51879168)the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML20240001,GML2024009)。
文摘We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete.
基金Funded by China National Key Research and Development Program for Application and Verification of Typical Groundwater Contaminated Sites(No.2019YFC1804805)Shenyang Key Laboratory of Safety Evaluation and Disaster Prevention of Engineering Structures(No.S230184)the Funding Project of Northeast Geological S&T Innovation Center of China Geological Survey(No.QCJJ2023-39)。
文摘Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
文摘When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simulation technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placement first and then prestress-tensioning is proposed.
基金supported by the Project on Excellent Post-Graduate Dissertation of Hohai University,Nanjing,China(422003508)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX23_0187+2 种基金422003287)the National Natural Science Foundation of China(52250410359)Young Elite Scientists Sponsorship Program by Jiangsu Provincial Association for Science and Technology(TJ-2023-043).
文摘When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.
基金supported by the National Natural Science Foundation of China (Nos.10502005 and 10872025)the Ministry of Education of the People’s Republic of China.
文摘Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesses are considered to reduce the high-frequency-oscillation effect and achieve a nearly constant strain rate over a certain deformation range. It is known that the compressive strength of concrete-like materials is hydrostatic-stress-dependent, and the apparent dynamic strength enhancement comes from both the effects of the hydrostatic stress and strain rate. In order to differentiate them, numerical method is used to calculate the contribution of the hydrostatic stress, and then the genuine strain-rate effect on dynamic compressive strength of RPCs is determined. In addition, the effect of steel-fibers on dynamic strength and failure mode of RPCs is discussed.
基金Project(2010CB732004)supported by National Basic Research Program of ChinaProject(50934006)supported by the National Natural Science Foundation of China
文摘In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.
基金Funding by the National Natural Science Foundation of China (Nos.50778078 and 51178202)
文摘The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.
基金Funded by the Scientific Research Projects Department of Bitlis Eren University(No.BEBAP-2016.07)
文摘We examined the applicability of the pumice aggregate on the concrete formed by considering the reactive powder concrete mixture ratios, for the rigid superstructure concrete road pavement and building construction. The natural pumice aggregate in fibrous and non-fibrous concrete samples was used in the production of concrete by fracturing in 0.1-0.6 mm dimensions in rotor mill. The concreted formed in this way is named after the pumice powder concrete(PPC). The PPC samples produced were taken 7 days as 20 ℃ standard water cure, 28 days as 20 ℃ standard cure and 9 different types of combined cures. The combined cures were applied different temperatures in different durations. PPC samples were subjected to some pressure and flexural tests at the end of the standard water and combined cures. The highest compressive and flexural strengths of PPC samples were obtained after the combined cures: 3 days in 20 ℃ as standard water curing + 2 days in 180 ℃ in drying-oven. The highest compressive strength of PPC samples without any fiber was found to be 47.27 MPa, as for the highest flexural strength, it is found to be 5.23 MPa, in the end of the study. The highest compressive strength of fibrous PPC samples was 51.12 MPa, while flexural strength was 6.57 MPa.
文摘In this work, linear and mass attenuation coefficients, half and tenth-value layers, effective atomic number and electron density of different types of concretes were determined at 316.51, 468.07, 511, 662, 1173 and 1332 keV using MCNP-4C code and Win XCom programs. The MCNP-4C and Win XCom results agreed well with each other, with differences of \±1.9%. The results agreed with available experimental data, too, with differences of \±6%.The MCNP-4C results showed better agreement with the experimental data than the Win XCom results. Also, it was found that the effective electron density of studied concretes varies in the range of(2.83–3.2) 9 10^(23)electron/g.
基金Funded by the National Natural Science Foundation of China (No. 50808101)Jiangsu Provincial Program for Basic Research (Natural Science Foundation) (No.BK2008417)China Postdoctoral Science Foundation (No. 20080431100)
文摘Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.
基金Funded by the National Natural Science Foundation of China(No.59338120) and Doctoral Foundation of Ministry of Education ofChina(No.1999062002)
文摘An important problem facing stress-strain response modeling of concrete is the complexity of the compressive strength grades. 21 groups of speeimens with different cubic compressive strength (56.3- 164.9 MPa ) hate beets numerically analyzed. Using only the compressive strength, a stress-strain response model of different concrete grade was established. The numerical simulation model not only qualitatively reproduces the relationship of uniaxial compressive strength, peak value stress and cubic compressive strength, but realizes the consistence of the ascending branch of stress-strain cunts with different strength grades by introducing the correction coefficient k. The results indicate k increases gradually from 0 to approximate 1 with the increase of the compressive strength, corresponding to the transition from the paracurve to straight line branch in stress-strain curves. When k is 0, the madel is identical to the Hognestad equation. A good agreement with the experiment data was obtained.
基金The National Key Research and Development Program of China(No.2017YFC0703100)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0081)
文摘In order to expand the engineering application of recycle aggregate mortars (RAM) with aggregates from demolished concretes, the models for the properties of RAM and the replacement rate of these recycled fine aggregates were proposed. First, different kinds of mathematical models for the basic properties (compressive strength, water retention rate, and consistency loss) of RAM with two kinds of admixtures, thickening powders (TP) and self-made powdery admixtures (SSCT) designed for RAM, and the replacement rates were established, while the average relative errors and relative standard errors of these models were calculated. Additionally, the models and their error analyses for the curves of drying shrinkage and curing time of RAM + SSCT at different replacement rates were put forward. The results show that polynomial functions should be used to calculate the basic properties of RAM + TP and RAM + SSCT at different replacement rates. In addition, polynonfial functions are the most optimal models for the sharp shrinkage sections in the curves of drying shrinkage-curing time of RAM + SSCT, while exponential functions should be used as the models for the slow shrinkage sections and steady shrinkage sections.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金supported by the National Natural Science Foundation of China(21978013)the Fundamental Research Funds for the Central in China(XK1802-4)。
文摘Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality.
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.
文摘In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.
文摘In this paper waste expanded polystyrene (EPS) granulated in various proportions was added to cement and lime paste and samples were produced in order to provide heat and voice insulation and produce low-intensity concrete. Styropor, which is especially obtained as waste material in packaging industry, is used in production of samples;the purpose here was to prevent environmental pollution and produce construction material with variable cost. Hot wire method was used for measuring the thermal conductivity of the sample. A mould with the dimensions of 20 × 60 × 150 mm was prepared for thermal experiments and 100 × 100 × 100 mm was prepared for mechanical experiments and the mortars were cast. The samples were subjected to thermal conductivity, pressure and tensile strength and water absorption tests. The diameter of the EPS ranged from 0 to 6 mm and concrete involvement rate was determined as to be 0 to 70 percentages. As a result, it has been found out that in EPS-containing cement and lime binding-agent materials can be used for the following purposes: (i) production of earthquake-proof low-intensity concrete, (ii) as insulation-purpose construction material, (iii) decoration.
文摘The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more available with a subsequent increased interest in their properties because they develop initial strength during a heat up of the units within 8-10 h, in contrast to 24 h after placement for high Al_2O_3 cements(HAC). This strength development enables high temperature processing units to be relined with minimum turnaround time, thus providing a favored cost/performance ratio. The present paper identifies the predominant phosphate phases responsible for developing good mechanical-strength properties of zirconia and alumina concretes bonded with mechano-chemical binders. It sets out the colloid and crystalline phases resulted from interphase interaction that provide the basis for high concentrated bonding suspensions(HCBS) technology useful to the refractory industry.