This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan for...This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.展开更多
In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theor...In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.展开更多
The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction...The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement(CSA), ordinary Portland cement(OPC), and calcium sulfate(CS) to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength(UCS), splitting tensile strength(STS), and volume change of fiber-added expansive mixtures were determined at different time periods(i.e. the strengths on the 28 th day, and the volume changes on the 1 st, 7 th, 14 th, 21 st, and 28 th days). The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion.展开更多
Four groups of numerical models of Brazilian tests on rock-shotcrete interfaces were successfully conducted by PFC2D. The tensile strength and Young’s modulus of shotcrete were considered. Six different undulations o...Four groups of numerical models of Brazilian tests on rock-shotcrete interfaces were successfully conducted by PFC2D. The tensile strength and Young’s modulus of shotcrete were considered. Six different undulations of rock-shotcrete interface were set up. The influences of multiple parameters on the bearing characteristics of the rock-shotcrete interface were studied. The results showed that a better support performance can be obtained by increasing the Young’s modulus of shotcrete rather than the tensile strength of shotcrete. For different tensile strength and Young’s modulus, the increase of sawtooth height has different effects on the support performance. The failure mechanism of the rock-shotcrete interfaces was analysed in detail. The stress shielding effect and stress concentration effect caused by the shape characteristics of rock-shotcrete interface were observed. The influence of these parameters on the overall support performance should be fully considered in a reasonable support design.展开更多
In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was des...In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.展开更多
Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect ...Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect of nano particles can also appear in shotcrete, they will greatly benefit the wide application of shotcrete in more and more repair and strengthening of structures in civil engineering, especially in corrosive environments. In this study, through experiments on 70 specimens, the effects of nano SiO2, CaCO3 and Al2O3 particles on the early-age porosity, pore size distribution, compressive strength and chloride permeability of shotcrete were investigated.Test results indicated that nano SiO2 particles significantly increased the compressive strength and chloride penetration resistance; nano Al2O3 and CaCO3 particles had slight enhancing effect on the compressive strength; nano CaCO3 particles were most effective in promoting the chloride penetration resistance of shotcrete. As a conclusion, nano SiO2 particles were recommended when both early age compressive strength and chloride penetration resistance were crucial, and nano CaCO3 particles were recommended when only chloride penetration resistance was concerned for their high cost-effectiveness.展开更多
In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where t...In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.展开更多
The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag...The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag powder as auxiliary cementitious material is proposed and experiments are carried out by response surface methodology(RSM). Multivariate nonlinear response models are constructed to investigate the effect of factors on the uniaxial compressive strength(UCS) of tailings wet shotcrete(TWSC). The UCS of TWSC is predicted and optimized by constructing Gaussian process regression(GPR) and genetic algorithm(GA). The UCS of TWSC is gradually enhanced with the increase of slag powder dosage and fineness modulus, and it is enhanced first and then decreased with the increase of fly ash dosage. The microstructure of TWSC has the highest gray value and the highest UCS when the fly ash dosage is about 120 kg·m^(-3). The GPR–GA model constructed in this study achieves high accuracy prediction and optimization of the UCS of TWSC under multi-factor conditions.展开更多
Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully...Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.展开更多
The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in und...The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in underground coal mine. It has many advantages such as simple structure convenient operation and high reliability. The on-site experiments indicate that the sprayed layer is even, at the same time, the quantity of rebound and dust content decrease largely. The robot can satisfy the requirement of shotcrete process completely.展开更多
In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared...In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared with ordinary concrete by the same mixture, the difference of sulfate attack resistance of shotcrete was studied. The experimental results showed that, with dry-wet cycles increasing, the changes of loss rate of relative dynamic elastic modulus and mass loss rate of specimens included three stages: initial descent stage, stable stage, and rapid descent stage, respectively. However, the changes of mechanical properties first increased and then decreased. Furthermore, the corrosion products of shotcrete after sulfate attack were observed by using the method of XRD, thermal analysis, and SEM, respectively, and the failure mode of shotcrete turned from ettringite destruction to ettringite-gypsum comprehensive failure. Meanwhile, the contents of ettringite and gypsum increased with increasing dry-wet cycle. Simultaneously, the stratified powders drilled from shotcrete under 150's dry-wet cycle were analyzed for the mineral phase composition and thermal analysis. With the drywet cycle increasing, the content of ettringite first increased and then decreased and tended to stable. However, the determination of gypsum decreased gradually and even to 0 when the depth was more than 12 mm.展开更多
In this research,the dynamics of wet spray nozzles with different geometries,used to accelerate shotcrete,are investigated on the basis of a suitable three-dimensional mathematical model and related numerical method.S...In this research,the dynamics of wet spray nozzles with different geometries,used to accelerate shotcrete,are investigated on the basis of a suitable three-dimensional mathematical model and related numerical method.Simulations have been conducted in the frame of the SIMPLEC algorithm.The k-εturbulence model has been used to account for turbulent effects.The study shows that when the angle of the convergent section is less than 3°,it has a scarce effect on the dynamics of the jet of shotcrete;with the increase of the convergence angle,the shotcrete jet velocity decreases and the nozzle wear increases;when this angle is greater than 6°,the concrete outlet jet velocity is very small and the nozzle can easily be blocked.Experimental results are in good agreement with the outcomes of the numerical simulations,which indicates that the used approach is reliable.展开更多
The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production...The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful.展开更多
To analyze the influence of new compound admixture on shotcrete performance, the ordinary Portland cement pr425 was used as matrix components. The optimum proportion of admixture was obtained by analyzing the influenc...To analyze the influence of new compound admixture on shotcrete performance, the ordinary Portland cement pr425 was used as matrix components. The optimum proportion of admixture was obtained by analyzing the influence of content on cement setting time and compressive strength. The microstructure of cement test block and the mechanism of reducing dust of composite macromolecule admixture were analyzed by scanning electron microscopy and infrared spectroscopy. It was shown that the ratio of polyacrylic acid was 0.02%. The ratio of J85 accelerator was 5%. The ratio of bentonite was 4.5% in composite admixture. The most optimal content of admixture in the slurry was 7%. The compound coagulant formed by additive together with C3A, C4AF which provided nucleation for hydration and crystallization of C3S and C3S, and played an active role to promote the activity of the mineral admixture in cement, and increased the elastic modulus of C-S-H gel and accelerated the hydration process of portland cement. Bentonite and polyacrylic acid promote the wettability, cohesiveness and workability of cement paste in the process of hydration. The formation of cement test block gel was even. The interface between the matrix phase and the aggregate phase was not obvious which ensured the matching between the matrix and the aggregate phase. The addition of bentonite formed hydrogen bonds in cement paste and improved the cohesiveness of the system. The J-85 accelerator promoted the combination of aluminate and gypsum which hindered the formation of calcium carbide around the cement particles which made cement rapid condensation. Polyacrylic acid mainly changed the strength of hydroxyl absorption peak in cement paste to improve the initial strength of cement test block. The addition of new admixtures promoted the process of cement hydration to be more thorough and affected the later strength development of concrete by affecting the formation of calcium carbonate stone.展开更多
The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cem...The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials.Therefore,it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete(TWSC)and to investigate the optimal mix proportion.In this paper,a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.The strength prediction and mix proportion optimization of TWSC are carried out by machine learning techniques.The results show that the response model has R^(2)>0.94 and P<0.01,which indicates that the model has high reliability.Moreover,the strength of TWSC increases with the increase of tailings fineness modulus and decrease of water-binder ratio,while it also increases and then decreases with the increase of replacement rate of slag powder to cement(SRC rate).The extreme learning machine(ELM)constructed in this paper predicts the strength of TWSC with an accuracy of more than 98%and achieves rapid prediction under multi-factor conditions.It is worth mentioning that the ELM combined with the genetic algorithm(ELM-GA)collaboratively solved to obtain the mix proportion for C15 and C20 strength grades of TWSC and the maximum error is verified by experiments to be less than 2%.展开更多
A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal...A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.展开更多
In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strengt...In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strength growth characteristics of HFS-BFRS were analyzed.And thefitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given.And based on the orthogonal experimental method,the effects on the compressive strength,splitting tensile strength andflex-ural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.The effect of three factors on the mechanical properties of HFS-BFRS,3,and 28 d,respectively,was revealed by choosing the colloidal sand ratio(C/H),basaltfiber volume fraction(BF Vol)and naphthalene high-efficiency water reducing agent(FDN)as the design variables,combined with indoor tests and theoretical analysis.The results show that the sensitivity of the three factors on compressive strength andflexural strength is C/H>FDN>BF Vol,and split-ting tensile strength is BF Vol>FDN>C/H.Finally,thefitting ratio of HFS-BFRS was optimized by the factor index method,and the rationality was verified by thefield test.For thefluidity of HFS-BFRS,the slump can be improved by 139%under the action of 1.2%FDN,which guarantees the pump-ability of HFS-BFRS.展开更多
The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial g...The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial gravel with only a small overlap underneath settlement-sensitive buildings. In this paper, the measures in the tunnel to minimize the settlements of the buildings during the shotcrete excavations are described. Basis for this planning were extensive 3D-FE-calculations. Furthermore, under two buildings a compensation grouting measure was carried out, in order to compensate the occurring settlements. This paper describes how the required time and the amount of injection material (grout) could be reduced during the compensation grouting in highly permeable gravel.展开更多
The generalized regression neural network-one kind of RBF neural network, is chosen to construct the inverse-kinematics model for the shotcrete robot which has redundant degree-of-freedom. The inverse-kinematics model...The generalized regression neural network-one kind of RBF neural network, is chosen to construct the inverse-kinematics model for the shotcrete robot which has redundant degree-of-freedom. The inverse-kinematics model of the object is trained by the general learning method. In constructing model process, different partition methods is tried to divide the joint space and different diffusion coefficient value to train the neural network. The influence of the spread coefficient to the approach ability is also studied. The simulation method is adopted to test the performance of the neural network. The simulation result turns out to be satisfactory.展开更多
Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and c...Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.展开更多
文摘This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.
基金Project(50934002) supported by the National Natural Science Foundation of China
文摘In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.
基金financial support from Natural Sciences and Engineering ResearchCouncil(NSERC)(NSERC EGP 501335-16) along with the donated CSA cement
文摘The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement(CSA), ordinary Portland cement(OPC), and calcium sulfate(CS) to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength(UCS), splitting tensile strength(STS), and volume change of fiber-added expansive mixtures were determined at different time periods(i.e. the strengths on the 28 th day, and the volume changes on the 1 st, 7 th, 14 th, 21 st, and 28 th days). The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion.
基金We acknowledge the financial supports of the National Natural Science Foundation of China(No.41630642)Project of Innovationdriven Plan in Central South University(No.2018CX020)the Funded by Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(No.2017YSJS14).
文摘Four groups of numerical models of Brazilian tests on rock-shotcrete interfaces were successfully conducted by PFC2D. The tensile strength and Young’s modulus of shotcrete were considered. Six different undulations of rock-shotcrete interface were set up. The influences of multiple parameters on the bearing characteristics of the rock-shotcrete interface were studied. The results showed that a better support performance can be obtained by increasing the Young’s modulus of shotcrete rather than the tensile strength of shotcrete. For different tensile strength and Young’s modulus, the increase of sawtooth height has different effects on the support performance. The failure mechanism of the rock-shotcrete interfaces was analysed in detail. The stress shielding effect and stress concentration effect caused by the shape characteristics of rock-shotcrete interface were observed. The influence of these parameters on the overall support performance should be fully considered in a reasonable support design.
文摘In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.
基金Funded by National Natural Science Foundation of China(Nos.51522905,51379186)
文摘Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect of nano particles can also appear in shotcrete, they will greatly benefit the wide application of shotcrete in more and more repair and strengthening of structures in civil engineering, especially in corrosive environments. In this study, through experiments on 70 specimens, the effects of nano SiO2, CaCO3 and Al2O3 particles on the early-age porosity, pore size distribution, compressive strength and chloride permeability of shotcrete were investigated.Test results indicated that nano SiO2 particles significantly increased the compressive strength and chloride penetration resistance; nano Al2O3 and CaCO3 particles had slight enhancing effect on the compressive strength; nano CaCO3 particles were most effective in promoting the chloride penetration resistance of shotcrete. As a conclusion, nano SiO2 particles were recommended when both early age compressive strength and chloride penetration resistance were crucial, and nano CaCO3 particles were recommended when only chloride penetration resistance was concerned for their high cost-effectiveness.
文摘In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.
基金financially supported by the National Key Research and Development Program of China (Nos.2018YFC1900603 and 2018YFC0604604)。
文摘The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag powder as auxiliary cementitious material is proposed and experiments are carried out by response surface methodology(RSM). Multivariate nonlinear response models are constructed to investigate the effect of factors on the uniaxial compressive strength(UCS) of tailings wet shotcrete(TWSC). The UCS of TWSC is predicted and optimized by constructing Gaussian process regression(GPR) and genetic algorithm(GA). The UCS of TWSC is gradually enhanced with the increase of slag powder dosage and fineness modulus, and it is enhanced first and then decreased with the increase of fly ash dosage. The microstructure of TWSC has the highest gray value and the highest UCS when the fly ash dosage is about 120 kg·m^(-3). The GPR–GA model constructed in this study achieves high accuracy prediction and optimization of the UCS of TWSC under multi-factor conditions.
基金grateful funding provided by National Key Research and Development Program of China(Project 2019YFC1906202)Guangxi Key Research and Development Plan(Guike AB19259008)Major Science and Technology Special Project of Guangxi Province(Guike AA18242007-3).
文摘Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.
文摘The design and accomplishment of shotcrete robot is presented in this paper. This shotcrete robot is the first robot for underground coal mine in our country. It is a specific machine used for spraying concrete in underground coal mine. It has many advantages such as simple structure convenient operation and high reliability. The on-site experiments indicate that the sprayed layer is even, at the same time, the quantity of rebound and dust content decrease largely. The robot can satisfy the requirement of shotcrete process completely.
基金Funded by the National Natural Science Foundation of China(No.51278403)the Program for Changjiang Scholars and Innovative Research Team in University(IRT 13089)the Doctor Innovation Foundation of Xi’an University of Architecture and Technology
文摘In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared with ordinary concrete by the same mixture, the difference of sulfate attack resistance of shotcrete was studied. The experimental results showed that, with dry-wet cycles increasing, the changes of loss rate of relative dynamic elastic modulus and mass loss rate of specimens included three stages: initial descent stage, stable stage, and rapid descent stage, respectively. However, the changes of mechanical properties first increased and then decreased. Furthermore, the corrosion products of shotcrete after sulfate attack were observed by using the method of XRD, thermal analysis, and SEM, respectively, and the failure mode of shotcrete turned from ettringite destruction to ettringite-gypsum comprehensive failure. Meanwhile, the contents of ettringite and gypsum increased with increasing dry-wet cycle. Simultaneously, the stratified powders drilled from shotcrete under 150's dry-wet cycle were analyzed for the mineral phase composition and thermal analysis. With the drywet cycle increasing, the content of ettringite first increased and then decreased and tended to stable. However, the determination of gypsum decreased gradually and even to 0 when the depth was more than 12 mm.
基金financially supported by the Foundation of State Key Laboratory of Safety and Health for Metal Mines(2018-JSKSSYS-05).
文摘In this research,the dynamics of wet spray nozzles with different geometries,used to accelerate shotcrete,are investigated on the basis of a suitable three-dimensional mathematical model and related numerical method.Simulations have been conducted in the frame of the SIMPLEC algorithm.The k-εturbulence model has been used to account for turbulent effects.The study shows that when the angle of the convergent section is less than 3°,it has a scarce effect on the dynamics of the jet of shotcrete;with the increase of the convergence angle,the shotcrete jet velocity decreases and the nozzle wear increases;when this angle is greater than 6°,the concrete outlet jet velocity is very small and the nozzle can easily be blocked.Experimental results are in good agreement with the outcomes of the numerical simulations,which indicates that the used approach is reliable.
文摘The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful.
基金Funded by the National Science Foundation of China(No.41472281)the National Science Foundation of Liaoning Province(No.20170540143)
文摘To analyze the influence of new compound admixture on shotcrete performance, the ordinary Portland cement pr425 was used as matrix components. The optimum proportion of admixture was obtained by analyzing the influence of content on cement setting time and compressive strength. The microstructure of cement test block and the mechanism of reducing dust of composite macromolecule admixture were analyzed by scanning electron microscopy and infrared spectroscopy. It was shown that the ratio of polyacrylic acid was 0.02%. The ratio of J85 accelerator was 5%. The ratio of bentonite was 4.5% in composite admixture. The most optimal content of admixture in the slurry was 7%. The compound coagulant formed by additive together with C3A, C4AF which provided nucleation for hydration and crystallization of C3S and C3S, and played an active role to promote the activity of the mineral admixture in cement, and increased the elastic modulus of C-S-H gel and accelerated the hydration process of portland cement. Bentonite and polyacrylic acid promote the wettability, cohesiveness and workability of cement paste in the process of hydration. The formation of cement test block gel was even. The interface between the matrix phase and the aggregate phase was not obvious which ensured the matching between the matrix and the aggregate phase. The addition of bentonite formed hydrogen bonds in cement paste and improved the cohesiveness of the system. The J-85 accelerator promoted the combination of aluminate and gypsum which hindered the formation of calcium carbide around the cement particles which made cement rapid condensation. Polyacrylic acid mainly changed the strength of hydroxyl absorption peak in cement paste to improve the initial strength of cement test block. The addition of new admixtures promoted the process of cement hydration to be more thorough and affected the later strength development of concrete by affecting the formation of calcium carbonate stone.
基金funded by the National Key Research and Development Program of China(Grant Nos.2018YFC1900603,2018YFC0604604).
文摘The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials.Therefore,it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete(TWSC)and to investigate the optimal mix proportion.In this paper,a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.The strength prediction and mix proportion optimization of TWSC are carried out by machine learning techniques.The results show that the response model has R^(2)>0.94 and P<0.01,which indicates that the model has high reliability.Moreover,the strength of TWSC increases with the increase of tailings fineness modulus and decrease of water-binder ratio,while it also increases and then decreases with the increase of replacement rate of slag powder to cement(SRC rate).The extreme learning machine(ELM)constructed in this paper predicts the strength of TWSC with an accuracy of more than 98%and achieves rapid prediction under multi-factor conditions.It is worth mentioning that the ELM combined with the genetic algorithm(ELM-GA)collaboratively solved to obtain the mix proportion for C15 and C20 strength grades of TWSC and the maximum error is verified by experiments to be less than 2%.
文摘A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.
基金This work was supported by the National Natural Science Foundation of China(51834001,52104129)a project supported by the China Postdoctoral Science Foundation(2020M672226,2022T150195)Key Laboratory of Mine Ecological Effects and Systematic Restoration,Ministry of Natural Resources,Open Fund(MEER-2022-09).
文摘In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strength growth characteristics of HFS-BFRS were analyzed.And thefitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given.And based on the orthogonal experimental method,the effects on the compressive strength,splitting tensile strength andflex-ural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.The effect of three factors on the mechanical properties of HFS-BFRS,3,and 28 d,respectively,was revealed by choosing the colloidal sand ratio(C/H),basaltfiber volume fraction(BF Vol)and naphthalene high-efficiency water reducing agent(FDN)as the design variables,combined with indoor tests and theoretical analysis.The results show that the sensitivity of the three factors on compressive strength andflexural strength is C/H>FDN>BF Vol,and split-ting tensile strength is BF Vol>FDN>C/H.Finally,thefitting ratio of HFS-BFRS was optimized by the factor index method,and the rationality was verified by thefield test.For thefluidity of HFS-BFRS,the slump can be improved by 139%under the action of 1.2%FDN,which guarantees the pump-ability of HFS-BFRS.
文摘The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial gravel with only a small overlap underneath settlement-sensitive buildings. In this paper, the measures in the tunnel to minimize the settlements of the buildings during the shotcrete excavations are described. Basis for this planning were extensive 3D-FE-calculations. Furthermore, under two buildings a compensation grouting measure was carried out, in order to compensate the occurring settlements. This paper describes how the required time and the amount of injection material (grout) could be reduced during the compensation grouting in highly permeable gravel.
基金Support by Education Innovation fund of Shandong Education Department(SDYY06052) Support by Special Fund of Shandong Science and Technology Department(2006GG1108097-23)
文摘The generalized regression neural network-one kind of RBF neural network, is chosen to construct the inverse-kinematics model for the shotcrete robot which has redundant degree-of-freedom. The inverse-kinematics model of the object is trained by the general learning method. In constructing model process, different partition methods is tried to divide the joint space and different diffusion coefficient value to train the neural network. The influence of the spread coefficient to the approach ability is also studied. The simulation method is adopted to test the performance of the neural network. The simulation result turns out to be satisfactory.
文摘Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.