A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is co...A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.展开更多
DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model...DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.展开更多
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n...In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.展开更多
Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric tra...Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Base...In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.展开更多
A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yie...A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is dif...Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.展开更多
The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ...The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.展开更多
This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">&l...This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
We propose a BPNN based adaptive sliding mode control scheme for speed tracking of a DC motor with unknown system nonlinearities. The input-output linearization technique is used to cancel the nonlinearities, and outp...We propose a BPNN based adaptive sliding mode control scheme for speed tracking of a DC motor with unknown system nonlinearities. The input-output linearization technique is used to cancel the nonlinearities, and output of the BPNN is incorporated into the controller in the proposed scheme. It is shown that the rotor speed of a DC motor can follow any arbitrarily selected trajectories under variable load torque. Then the application of the approach is tested via some simulations.展开更多
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutat...An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.展开更多
文摘A new compensation method and an algorithm for compensating for the commutation torque ripples of the trapezoidal EMF brushless DC motor are put forward. Simulation and experimental results show that this method is correct and practical.
文摘DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.
文摘In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.
文摘Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.
文摘A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
文摘Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.
文摘The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.
文摘This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
文摘We propose a BPNN based adaptive sliding mode control scheme for speed tracking of a DC motor with unknown system nonlinearities. The input-output linearization technique is used to cancel the nonlinearities, and output of the BPNN is incorporated into the controller in the proposed scheme. It is shown that the rotor speed of a DC motor can follow any arbitrarily selected trajectories under variable load torque. Then the application of the approach is tested via some simulations.
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
基金the National Key Research and Development Program(No.2017YFB0406204,2016YFC0105604)Beijing Science and Technology Projects(No.Z181100003818002)Science and Technology Service Network Initiative(No.FJ-STS-QYZX-099,KFJ-STS-ZDTP-069).
文摘An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.