采用RF PECVD方法,在P a SiC:H薄膜沉积技术基础上,通过逐步减小碳、硼的掺杂浓度,增大氢稀释率,使材料从非晶态向微晶态转变,在获得本征微晶材料之后,再逐步增大硼掺杂浓度,得到P型微晶硅薄膜材料(暗电导率为5.22×10-3S/cm,光学...采用RF PECVD方法,在P a SiC:H薄膜沉积技术基础上,通过逐步减小碳、硼的掺杂浓度,增大氢稀释率,使材料从非晶态向微晶态转变,在获得本征微晶材料之后,再逐步增大硼掺杂浓度,得到P型微晶硅薄膜材料(暗电导率为5.22×10-3S/cm,光学带隙大于2.0eV)。在这个过程中可以明显观察到碳、硼抑制材料晶化的作用。展开更多
The magnetic field profiles,which are produced by three ways in the deposition chamber and plasma chamber of single coil divergent field MWECR CVD system,are investigated.The magnetic field gradient of these magnetic ...The magnetic field profiles,which are produced by three ways in the deposition chamber and plasma chamber of single coil divergent field MWECR CVD system,are investigated.The magnetic field gradient of these magnetic field profiles is obtained quantitatively by using Lorentz fit.The results indicate that the gradient value of the magnetic field profile near by the substrate,which is produced by a coil current with 137.7A if a SmCo permanent magnet is equipped under the substrate holder,is the largest;when the SmCo permanent magnet is taken away,the larger one is produced by the coil current with 137.7A and the smallest one produced by a coil current with 115.2A.High deposition rate of a-Si∶H film is observed near by the substrate with high magnetic field gradient.But uneven deposition rate along the radius of the sample holder is also found by infrared analysis technology when sample is deposited in magnetic field profile,which is produced by the coil current with 137.7A if the SmCo permanent magnet is equipped under the substrate holder.展开更多
用自洽法计算了p i n型a-Si:H薄膜太阳电池中p i和i n两个分立势垒区中的电荷密度分布ρ(x)、电场分布ε(x)和耗尽层厚度XD.减少i层厚度使两个分立势垒区部分重叠,用电场叠加原理计算耗尽层中的电场分布,在此基础上,根据光生载流子的全...用自洽法计算了p i n型a-Si:H薄膜太阳电池中p i和i n两个分立势垒区中的电荷密度分布ρ(x)、电场分布ε(x)和耗尽层厚度XD.减少i层厚度使两个分立势垒区部分重叠,用电场叠加原理计算耗尽层中的电场分布,在此基础上,根据光生载流子的全收集条件Lpmin=μpτpεmin,计算出a-Si:H薄膜太阳电池的最佳i层厚度Xb.展开更多
文摘采用RF PECVD方法,在P a SiC:H薄膜沉积技术基础上,通过逐步减小碳、硼的掺杂浓度,增大氢稀释率,使材料从非晶态向微晶态转变,在获得本征微晶材料之后,再逐步增大硼掺杂浓度,得到P型微晶硅薄膜材料(暗电导率为5.22×10-3S/cm,光学带隙大于2.0eV)。在这个过程中可以明显观察到碳、硼抑制材料晶化的作用。
文摘The magnetic field profiles,which are produced by three ways in the deposition chamber and plasma chamber of single coil divergent field MWECR CVD system,are investigated.The magnetic field gradient of these magnetic field profiles is obtained quantitatively by using Lorentz fit.The results indicate that the gradient value of the magnetic field profile near by the substrate,which is produced by a coil current with 137.7A if a SmCo permanent magnet is equipped under the substrate holder,is the largest;when the SmCo permanent magnet is taken away,the larger one is produced by the coil current with 137.7A and the smallest one produced by a coil current with 115.2A.High deposition rate of a-Si∶H film is observed near by the substrate with high magnetic field gradient.But uneven deposition rate along the radius of the sample holder is also found by infrared analysis technology when sample is deposited in magnetic field profile,which is produced by the coil current with 137.7A if the SmCo permanent magnet is equipped under the substrate holder.
文摘用自洽法计算了p i n型a-Si:H薄膜太阳电池中p i和i n两个分立势垒区中的电荷密度分布ρ(x)、电场分布ε(x)和耗尽层厚度XD.减少i层厚度使两个分立势垒区部分重叠,用电场叠加原理计算耗尽层中的电场分布,在此基础上,根据光生载流子的全收集条件Lpmin=μpτpεmin,计算出a-Si:H薄膜太阳电池的最佳i层厚度Xb.