Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security.Traditional signature detection methods that utilize static and dynamic features face limitations due...This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security.Traditional signature detection methods that utilize static and dynamic features face limitations due to the continuous evolution and diversity of new malware.Recently,machine learning-based malware detection techniques,such as Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN),have gained attention.While these methods demonstrate high performance by leveraging static and dynamic features,they are limited in detecting new malware or variants because they learn based on the characteristics of existing malware.To overcome these limitations,malware detection techniques employing One-Shot Learning and Few-Shot Learning have been introduced.Based on this,the Siamese Network,which can effectively learn from a small number of samples and perform predictions based on similarity rather than learning the characteristics of the input data,enables the detection of new malware or variants.We propose a dual Siamese network-based detection framework that utilizes byte images converted frommalware binary data to grayscale,and opcode frequency-based images generated after extracting opcodes and converting them into 2-gramfrequencies.The proposed framework integrates two independent Siamese network models,one learning from byte images and the other from opcode frequency-based images.The detection models trained on the different kinds of images generated separately apply the L1 distancemeasure to the output vectors themodels generate,calculate the similarity,and then apply different weights to each model.Our proposed framework achieved a malware detection accuracy of 95.9%and 99.83%in the experimentsusingdifferentmalware datasets.The experimental resultsdemonstrate that ourmalware detection model can effectively detect malware by utilizing two different types of features and employing the dual Siamese network-based model.展开更多
Twins are one of the congenital anomalies described as phenomenal or mysterious. It is a rare and specific complication of monochorionic monoamniotic pregnancies resulting either from the late and incomplete splitting...Twins are one of the congenital anomalies described as phenomenal or mysterious. It is a rare and specific complication of monochorionic monoamniotic pregnancies resulting either from the late and incomplete splitting of one embryo into two distinct twins, or from the early secondary fusion of two initially separate embryos. These anomalies are often amenable to early diagnosis by ultrasound in the first trimester, which is still lacking in our community due to the uneven resources available. The aim of our clinical case study was to remind obstetric clinicians and the medical imaging sector that this very rare disease exists, hence the importance of obstetric ultrasound in the first trimester as an essential diagnostic tool to enable a management strategy to be put in place to avoid any surprises that could jeopardise the vital prognosis of the pregnant woman, particularly during parturition.展开更多
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
文摘This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security.Traditional signature detection methods that utilize static and dynamic features face limitations due to the continuous evolution and diversity of new malware.Recently,machine learning-based malware detection techniques,such as Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN),have gained attention.While these methods demonstrate high performance by leveraging static and dynamic features,they are limited in detecting new malware or variants because they learn based on the characteristics of existing malware.To overcome these limitations,malware detection techniques employing One-Shot Learning and Few-Shot Learning have been introduced.Based on this,the Siamese Network,which can effectively learn from a small number of samples and perform predictions based on similarity rather than learning the characteristics of the input data,enables the detection of new malware or variants.We propose a dual Siamese network-based detection framework that utilizes byte images converted frommalware binary data to grayscale,and opcode frequency-based images generated after extracting opcodes and converting them into 2-gramfrequencies.The proposed framework integrates two independent Siamese network models,one learning from byte images and the other from opcode frequency-based images.The detection models trained on the different kinds of images generated separately apply the L1 distancemeasure to the output vectors themodels generate,calculate the similarity,and then apply different weights to each model.Our proposed framework achieved a malware detection accuracy of 95.9%and 99.83%in the experimentsusingdifferentmalware datasets.The experimental resultsdemonstrate that ourmalware detection model can effectively detect malware by utilizing two different types of features and employing the dual Siamese network-based model.
文摘Twins are one of the congenital anomalies described as phenomenal or mysterious. It is a rare and specific complication of monochorionic monoamniotic pregnancies resulting either from the late and incomplete splitting of one embryo into two distinct twins, or from the early secondary fusion of two initially separate embryos. These anomalies are often amenable to early diagnosis by ultrasound in the first trimester, which is still lacking in our community due to the uneven resources available. The aim of our clinical case study was to remind obstetric clinicians and the medical imaging sector that this very rare disease exists, hence the importance of obstetric ultrasound in the first trimester as an essential diagnostic tool to enable a management strategy to be put in place to avoid any surprises that could jeopardise the vital prognosis of the pregnant woman, particularly during parturition.