期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Side force control on slender body by self-excited oscillation flag 被引量:1
1
作者 Jian Zhai Weiwei Zhang +3 位作者 Chuanqiang Gao Yanhua Zhang Zhengyin Ye Huanling Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期230-232,共3页
Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side fo... Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side force of slender body at high angles of attack, and is verified in wind tunnel. A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°. Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack, and the slop of fitting straight line obtained by the least square method is -0.158. The linear relationship between side force and roU-setting angle provides convenience for developing side force control law of slender body at high angles of attack. Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag. The range of side force coefficient and roll-setting angle are, respectively, -3.2 to 3.0 and -20° to 20°. The device is simple, effective, and is of great potential in engineering application. 展开更多
关键词 Self-excited oscillation flag Slender bodyHigh angle of attack Proportional control side force
下载PDF
Effect of multiple rings on side force over an ogive-cylinder body at subsonic speed
2
作者 Priyank KUMAR J.K.PRASAD 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1181-1188,共8页
Experiments and computations were performed over an ogive-cylinder body having an lift-to-drag ratio of 16 at a diameter Reynolds number of 29000. The side force on the slender body augments with increasing angles of ... Experiments and computations were performed over an ogive-cylinder body having an lift-to-drag ratio of 16 at a diameter Reynolds number of 29000. The side force on the slender body augments with increasing angles of attack for the case without a ring. This increase was mainly due to the increase in the asymmetry of the existing vortex pair in the wake of the body. Attempts were made to completely reduce the existing side force at the angle of attack ranging from 35° to 45°.Three rectangular cross-sectioned circumferential rings having a height of 3% of the local diameter were placed at axial distances of 2.5, 3.5 and 4.5 times the base diameter from the tip of the body so as to reduce the side force. The results obtained indicate that inclusion of three rings completely alleviated the side force on the slender body at the angle of attack ranging from 0° to 45°. The presence of rings was found to alter the growth of the vortices that helped in the reduction of the side force. Computations performed were in reasonable agreement with the experiments. 展开更多
关键词 Asymmetric vortex High angle of attack Ogive side force Slender body Vortex lift
原文传递
NUMERICAL SIMULATION ANALYSIS OF EXTERNAL FLOW FIELD OF WAGON-SHAPED CAR AT THE MOMENT OF PASSING 被引量:4
3
作者 GU Zhengqi HE Yibin +1 位作者 ZHOU Wei JIANG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期76-80,共5页
In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, s... In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented. 展开更多
关键词 External flow field Passing Numerical simulation side force coefficient
下载PDF
Numerical analysis of fluid flow dynamics around a yawed half-submerged cylinder inside an open channel
4
作者 M.I.Alamayreh A.Fenocchi +2 位作者 G.Petaccia S.Sibilla E.Persi 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第1期111-119,共9页
The drag and side force coefficients of a half-submerged cylinder in a free-surface flow were calculated through numerical simulations,with the aim of supporting the numerical modelling of log transport in rivers.The ... The drag and side force coefficients of a half-submerged cylinder in a free-surface flow were calculated through numerical simulations,with the aim of supporting the numerical modelling of log transport in rivers.The variability of these coefficients with the yaw angle with respect to the flow direction and with the ratio between the flow depth and the diameter of the cylinder were investigated.Simulations were performed with the three-dimensional code ANSYS/CFX,employing the volume of fluid multiphase technique to reproduce the critical interaction between the free surface and the cylinder.The numerical tests,showing the rise of the drag force coefficient for increasing yaw angles passing from flow-parallel to flow-perpendicular cylinder and the peak of the side force coefficient for flow-oblique cylinder,were validated by comparison with the results of laboratory experiments.The simulations were then extended to conditions with significant blockage in the vertical direction which had not been previously experimented,revealing a strong increase in the force coefficients for decreasing ratios between the flow depth and the cylinder diameter.A detailed description of the reproduced flow features in the proximity of the cylinder for the different cases was furthermore obtained.Such report,in addition to the analysis of the force coefficients,could serve a much wider range than that of log transport,i.e.,any case in which a floating cylinder interacts with free-surface flow. 展开更多
关键词 Large woody debris(LWD)transport floating objects drag and side force coefficients vertical blockage free-surface interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部