The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show th...Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show that as the scanning speed increases from 1,000 to 1,450 mm·s^(-1),the ratio between depth and width of molten pool increases,yet their overlapping regimes decrease.Meanwhile,increasing scanning speed can promote the solidified structure evolve from cell to columnar dendrites,and decrease the dendrite spacing from 0.54 to 0.39 μm;the average columnar grain size also decreases from 84.42 to 73.51 μm.At different scanning speeds,the preferred orientation of grains along the building is mainly <001> direction.In addition,the tensile properties of samples under different scanning speeds present a non-monotonic transition.The maximum ultimate tensile strength and elongation can reach 1,014±19 MPa and 19.04±1.12 (%),respectively,at the scanning speed of 1,300 mm·s^(-1).展开更多
A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulat...A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.展开更多
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51425402 and 51501048)。
文摘Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool,direction of grain growth,and tensile properties.Results show that as the scanning speed increases from 1,000 to 1,450 mm·s^(-1),the ratio between depth and width of molten pool increases,yet their overlapping regimes decrease.Meanwhile,increasing scanning speed can promote the solidified structure evolve from cell to columnar dendrites,and decrease the dendrite spacing from 0.54 to 0.39 μm;the average columnar grain size also decreases from 84.42 to 73.51 μm.At different scanning speeds,the preferred orientation of grains along the building is mainly <001> direction.In addition,the tensile properties of samples under different scanning speeds present a non-monotonic transition.The maximum ultimate tensile strength and elongation can reach 1,014±19 MPa and 19.04±1.12 (%),respectively,at the scanning speed of 1,300 mm·s^(-1).
基金financially supported by National Natural Science Foundation of China(Nos.U1908223 and U1960203)Fundamental Research Funds for the Central Universities(Grant No.N2125017)Talent Project of Revitalizing Liaoning(Grant No.XLYC1902046).
文摘A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.