By both the Charpy V-notched impact and the projectile tests, we here investigated the dynamic fracture behavior of a recently developed ultrastrong lightweight steel comprising a hierarchical martensitic matrix, disp...By both the Charpy V-notched impact and the projectile tests, we here investigated the dynamic fracture behavior of a recently developed ultrastrong lightweight steel comprising a hierarchical martensitic matrix, dispersed ultra-fine-retained austenite grains and oriented δ-ferrite lamellas, the latter being due to high Al and Si contents employed for low-density design. This steel shows a superior combination of specific ultimate tensile strength and impact toughness to other ultrastrong steels and has successfully arrested a real steel-cored bullet shot. These are attributed to the densely textured δ-ferrite lamellas that can deflect the propagating cracks until they are trapped and enclosed besides austenite-to-martensite transformation crack closure, leading to more energy consumed before failure. These results suggest a new pathway for toughening ultrastrong lightweight steels.展开更多
A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(...A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) . Deformation mechanisms in the γ-TiAl phase has been defined and the role of grain boundaries in the deformation and fracture has been assessed Some of the mechanisms of interactions between twinning or gliding dislocations and three types of γ γ domain boundaries or γ α_2 interface in a lamellar grain have been identified and resistance of the various domain boundaries or the interface to the propagation of twinning has been evaluated展开更多
Exsolution microstructures in olivine grains from dunite units in a few selected tectonic environments are reported here. They include lamellae of clinopyroxene and clinopyroxene-magnetite intergrowth in the Gaositai ...Exsolution microstructures in olivine grains from dunite units in a few selected tectonic environments are reported here. They include lamellae of clinopyroxene and clinopyroxene-magnetite intergrowth in the Gaositai and Yellow Hill Alaskan-type complexes, clinopyroxene-magnetite intergrowth in the Klzildag ophiolite, and chromite lamellae in the Hongshishan mafic-ultramafic intrusive complex. These lamellae commonly occur as needle- or rod-like features and are oriented in olivine grains. The host olivine grains have Fo contents of 92.5-92.6 in the Gaositai complex, 86.5-90.1 in the Yellow Hill complex, 93.2-93.4 in the Klzlldag ophiolite and 86.9-88.3 in the Hongshishan complex. Clinopyroxene in the rod-like intergrowth exsolved in olivine grains in the Gaositai and Yellow Hill is diopside with similar major element compositions of CaO (23.6-24.3wt%), SiO2 (52.2-54.0wt%), A1203 (0.67-2.15wt%), Cr203 (0.10-0.42wt%) and Na20 (0.14-0.26wt%). It falls into the compositional field of hydrothermal clinopyroxene and its origin is thus probably related to reaction between dunite and fluids. The enrichment of the fluids in Ca2+, Fe3+, Cr3+ and Na+, resulted in elevated concentrations of these cations in olivine solid solutions via the reaction. With decreasing temperature, the olivine solid solutions altered to an intergrowth of magnetite and clinopyroxene. The Fe3+ and Cr3+ preferentially partitioned into magnetite, while Ca2+ and Na+ entered clinopyroxene. Since the studied Alaskan-type complexes and ophiolite formed in a subduction environment, the fluids were probably released from the subducted slab. In contrast, the exsolved chromite in olivine grains from the Hongshishan complex that formed in post-orogenic extension setting can be related to olivine equilibrated with Cr-bearing liquid. Similarly, these lamellae have all been observed in serpentine surrounding olivine grains, indicating genetic relations with serpentinization.展开更多
In No. 50 kimberlite pipe of Fuxian County, Liaoning Province, an eclogite inclusion(nodule), which is extremely rare in kimberlites, was discovered and phlogopite exsolutionlamellae were found in garnets of the inclu...In No. 50 kimberlite pipe of Fuxian County, Liaoning Province, an eclogite inclusion(nodule), which is extremely rare in kimberlites, was discovered and phlogopite exsolutionlamellae were found in garnets of the inclusion. Microscopic, TEM and energy spectral observa-tions and studies confirmed that these lamellae are phlogopite. They are colourless and acicularin section, generally 0.5-5μm in width and 10-100μm in length. Nevertheless, fine lamellae,0.05-0.1μm wide and 1-2μm long, are also well developed. Along [111] of the garnet, three setsof phlogopite lamellae show oriented arrangement approximately at angles of 60°-70°, indi-cating that these lamellae might be the product of exsolution from garnet as a result ofpressure-release when eclogite ascended from the relatively deep level to the relatively shallowlevel of the mantle. Tiny acicular exsolution minerals (or inclusions) are commonly found ingarnet and pyroxene in eclogite inclusions of kimberlites all over the world and it has been re-ported that the identified exsolution minerals include pyroxene and rutile. This is the first timethat phlogopite exsolution lamillae were found in eclogite inclusions in the world.展开更多
This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting ...This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting the performance of the solar cell, as it produces the maximum amount of electrical charges, contributing to the photocurrent. Determining the thickness of the wafer cannot be only mechanical. It takes into account the internal physical mechanisms of generation-diffusion-recombination of excess minority carriers. They are also influenced by external factors such as temperature and magnetic field. Under these conditions, magneto transport equation is required to be applied on excess minority carrier in lamella base silicon solar cell. It yields maximum diffusion coefficient which result on Lorentz law and Umklapp process. Then from photocurrent, back surface recombination velocity expressions are derived, both maximum diffusion coefficient and thickness dependent. The plot of the back surface recombination calibration curves as function of lamella width, leads to its maximum values, trough intercept points. Lamella optimum width is then obtained, both temperature and magnetic field dependent and expressed in relationships to show the required base thickness in the elaboration process.展开更多
The fracture mechanism of lamellar Ti 49%Al alloy was investigated through studying the interactions between crack and lamellae or grain boundary. The results indicated that the nucleation and propagation mechanisms o...The fracture mechanism of lamellar Ti 49%Al alloy was investigated through studying the interactions between crack and lamellae or grain boundary. The results indicated that the nucleation and propagation mechanisms of crack depends on not only the lamellar orientations within grain but also the types of grain boundaries. When the angle between tensile axis and lamellae is relatively large, the main crack parallel to the lamellae propagates by nucleation, growth and linkage with interfacial microcracks. When the tensile axis is nearly parallel to the lamellae, the main crack perpendicular to the lamellae propagates by nucleation, growth and linkage with two types of microcracks, e.g. translamellar microcrack and interface delamination. In addition, the interlock grain boundary nearly parallel to the tensile axis is benefit to fracture toughness, the grain boundary nearly perpendicular to the tensile axis is bad for the toughness. [展开更多
The silicon solar cell with series-connected vertical junction is studied with different lamella widths—the expression of the ac recombination velocity of the excess minority carrier at the back surface is establishe...The silicon solar cell with series-connected vertical junction is studied with different lamella widths—the expression of the ac recombination velocity of the excess minority carrier at the back surface is established. Spectroscopy technique reveals dominated impact of the lamella widths of the base.展开更多
Using general multi-phase-field model,detailed microstructures corresponding to different initial lamellar sets were simulated in a binary eutectic alloy with an asymmetric phase diagram.The simulation results show th...Using general multi-phase-field model,detailed microstructures corresponding to different initial lamellar sets were simulated in a binary eutectic alloy with an asymmetric phase diagram.The simulation results show that regular or unstable oscillating lamellar structures depend on the initial lamellar widths of two solid phases.A lamellar morphology map associating with the initial widths has been derived,which is capable of showing the condition of forming various lamella structures.For instance,a regular lamella was formed with fast solidification while large lamella resulted from disorder growth with low interfacial velocity. The investigated interface velocities indicate that with fast solidification to form regular lamella,a disorder growth manner or a large lamellar spacing causes a low interface velocity.These results are in good agreement with those proposed by Jackson-Hunt model.展开更多
A novel Fe-enriched lamella sandwich phase (χ-phase) has been found to precipitate along the basal (0001)_(Mg) planes in the heat-treated Mg-Gd-Fe alloy and its structure is clearly revealed by means of atomic-resolu...A novel Fe-enriched lamella sandwich phase (χ-phase) has been found to precipitate along the basal (0001)_(Mg) planes in the heat-treated Mg-Gd-Fe alloy and its structure is clearly revealed by means of atomic-resolution transmission electron microscopy.The layered χ-phase only has a thickness of mono-unit-cell and consists invariably of ten atomic layers stacking along the[0001]_(Mg) direction,of which the outermost atomic layers had larger in-plane atom-pillar spacing than the inner layers.Fe/Gd atoms are mainly enriched in the outer four atomic layers in the χ-phase,forming two structurally unsymmetrical four-layer shells to sandwich the middle two Mg layers.An atomic model has been proposed for this layered sandwich-structured χ-phase.展开更多
In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test...In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.展开更多
基金financial support from National Natural Science Foundation of China(Grant Nos.51831002,51904028 and 52233018),ChinaFundamental Research Funds for the Central Universities(Grant No.06500151),China.
文摘By both the Charpy V-notched impact and the projectile tests, we here investigated the dynamic fracture behavior of a recently developed ultrastrong lightweight steel comprising a hierarchical martensitic matrix, dispersed ultra-fine-retained austenite grains and oriented δ-ferrite lamellas, the latter being due to high Al and Si contents employed for low-density design. This steel shows a superior combination of specific ultimate tensile strength and impact toughness to other ultrastrong steels and has successfully arrested a real steel-cored bullet shot. These are attributed to the densely textured δ-ferrite lamellas that can deflect the propagating cracks until they are trapped and enclosed besides austenite-to-martensite transformation crack closure, leading to more energy consumed before failure. These results suggest a new pathway for toughening ultrastrong lightweight steels.
文摘A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) . Deformation mechanisms in the γ-TiAl phase has been defined and the role of grain boundaries in the deformation and fracture has been assessed Some of the mechanisms of interactions between twinning or gliding dislocations and three types of γ γ domain boundaries or γ α_2 interface in a lamellar grain have been identified and resistance of the various domain boundaries or the interface to the propagation of twinning has been evaluated
基金financially supported by the National Natural Science Foundation of China (Grants 41522203, 41673037 and 41772055)Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant 2017095)
文摘Exsolution microstructures in olivine grains from dunite units in a few selected tectonic environments are reported here. They include lamellae of clinopyroxene and clinopyroxene-magnetite intergrowth in the Gaositai and Yellow Hill Alaskan-type complexes, clinopyroxene-magnetite intergrowth in the Klzildag ophiolite, and chromite lamellae in the Hongshishan mafic-ultramafic intrusive complex. These lamellae commonly occur as needle- or rod-like features and are oriented in olivine grains. The host olivine grains have Fo contents of 92.5-92.6 in the Gaositai complex, 86.5-90.1 in the Yellow Hill complex, 93.2-93.4 in the Klzlldag ophiolite and 86.9-88.3 in the Hongshishan complex. Clinopyroxene in the rod-like intergrowth exsolved in olivine grains in the Gaositai and Yellow Hill is diopside with similar major element compositions of CaO (23.6-24.3wt%), SiO2 (52.2-54.0wt%), A1203 (0.67-2.15wt%), Cr203 (0.10-0.42wt%) and Na20 (0.14-0.26wt%). It falls into the compositional field of hydrothermal clinopyroxene and its origin is thus probably related to reaction between dunite and fluids. The enrichment of the fluids in Ca2+, Fe3+, Cr3+ and Na+, resulted in elevated concentrations of these cations in olivine solid solutions via the reaction. With decreasing temperature, the olivine solid solutions altered to an intergrowth of magnetite and clinopyroxene. The Fe3+ and Cr3+ preferentially partitioned into magnetite, while Ca2+ and Na+ entered clinopyroxene. Since the studied Alaskan-type complexes and ophiolite formed in a subduction environment, the fluids were probably released from the subducted slab. In contrast, the exsolved chromite in olivine grains from the Hongshishan complex that formed in post-orogenic extension setting can be related to olivine equilibrated with Cr-bearing liquid. Similarly, these lamellae have all been observed in serpentine surrounding olivine grains, indicating genetic relations with serpentinization.
文摘In No. 50 kimberlite pipe of Fuxian County, Liaoning Province, an eclogite inclusion(nodule), which is extremely rare in kimberlites, was discovered and phlogopite exsolutionlamellae were found in garnets of the inclusion. Microscopic, TEM and energy spectral observa-tions and studies confirmed that these lamellae are phlogopite. They are colourless and acicularin section, generally 0.5-5μm in width and 10-100μm in length. Nevertheless, fine lamellae,0.05-0.1μm wide and 1-2μm long, are also well developed. Along [111] of the garnet, three setsof phlogopite lamellae show oriented arrangement approximately at angles of 60°-70°, indi-cating that these lamellae might be the product of exsolution from garnet as a result ofpressure-release when eclogite ascended from the relatively deep level to the relatively shallowlevel of the mantle. Tiny acicular exsolution minerals (or inclusions) are commonly found ingarnet and pyroxene in eclogite inclusions of kimberlites all over the world and it has been re-ported that the identified exsolution minerals include pyroxene and rutile. This is the first timethat phlogopite exsolution lamillae were found in eclogite inclusions in the world.
文摘This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting the performance of the solar cell, as it produces the maximum amount of electrical charges, contributing to the photocurrent. Determining the thickness of the wafer cannot be only mechanical. It takes into account the internal physical mechanisms of generation-diffusion-recombination of excess minority carriers. They are also influenced by external factors such as temperature and magnetic field. Under these conditions, magneto transport equation is required to be applied on excess minority carrier in lamella base silicon solar cell. It yields maximum diffusion coefficient which result on Lorentz law and Umklapp process. Then from photocurrent, back surface recombination velocity expressions are derived, both maximum diffusion coefficient and thickness dependent. The plot of the back surface recombination calibration curves as function of lamella width, leads to its maximum values, trough intercept points. Lamella optimum width is then obtained, both temperature and magnetic field dependent and expressed in relationships to show the required base thickness in the elaboration process.
文摘The fracture mechanism of lamellar Ti 49%Al alloy was investigated through studying the interactions between crack and lamellae or grain boundary. The results indicated that the nucleation and propagation mechanisms of crack depends on not only the lamellar orientations within grain but also the types of grain boundaries. When the angle between tensile axis and lamellae is relatively large, the main crack parallel to the lamellae propagates by nucleation, growth and linkage with interfacial microcracks. When the tensile axis is nearly parallel to the lamellae, the main crack perpendicular to the lamellae propagates by nucleation, growth and linkage with two types of microcracks, e.g. translamellar microcrack and interface delamination. In addition, the interlock grain boundary nearly parallel to the tensile axis is benefit to fracture toughness, the grain boundary nearly perpendicular to the tensile axis is bad for the toughness. [
文摘The silicon solar cell with series-connected vertical junction is studied with different lamella widths—the expression of the ac recombination velocity of the excess minority carrier at the back surface is established. Spectroscopy technique reveals dominated impact of the lamella widths of the base.
基金Projects(50771041,50801019)supported by the National Natural Science Foundation of ChinaProject(20080430909)supported by China Postdoctoral Science FoundationProject(HITQNJS.2008.018)supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China
文摘Using general multi-phase-field model,detailed microstructures corresponding to different initial lamellar sets were simulated in a binary eutectic alloy with an asymmetric phase diagram.The simulation results show that regular or unstable oscillating lamellar structures depend on the initial lamellar widths of two solid phases.A lamellar morphology map associating with the initial widths has been derived,which is capable of showing the condition of forming various lamella structures.For instance,a regular lamella was formed with fast solidification while large lamella resulted from disorder growth with low interfacial velocity. The investigated interface velocities indicate that with fast solidification to form regular lamella,a disorder growth manner or a large lamellar spacing causes a low interface velocity.These results are in good agreement with those proposed by Jackson-Hunt model.
基金Funded by the National Natural Science Foundation of China(No.11274027)Beijing Municipal Natural Science Foundation(No.2092005)。
文摘A novel Fe-enriched lamella sandwich phase (χ-phase) has been found to precipitate along the basal (0001)_(Mg) planes in the heat-treated Mg-Gd-Fe alloy and its structure is clearly revealed by means of atomic-resolution transmission electron microscopy.The layered χ-phase only has a thickness of mono-unit-cell and consists invariably of ten atomic layers stacking along the[0001]_(Mg) direction,of which the outermost atomic layers had larger in-plane atom-pillar spacing than the inner layers.Fe/Gd atoms are mainly enriched in the outer four atomic layers in the χ-phase,forming two structurally unsymmetrical four-layer shells to sandwich the middle two Mg layers.An atomic model has been proposed for this layered sandwich-structured χ-phase.
文摘In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.