期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
1
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
下载PDF
Sedimentary processes in Zenisu deep-sea channel revealed by side-scan imagery
2
作者 吴时国 郭军华 TOKUYAMA Hidekazu 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第4期368-375,共8页
Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in ... Side-scan sonar data collected by Cruises 99-09 Leg 2 and 00-06 Leg l of R/V Yokosuka were used to reveal the sedimentary processes in Zenisu deep-sea channel. The middle and lower segments of the channel are rich in turbidite and other debrite deposits. By high-resolution imaging, three sedimentary processes were distinguished with distinct acoustic features. 1. Slumps and slides occur with contrasting backscatter, rough surface textures, blockings, and acoustic shadows at headwalls. They are very extensive and often in lobate form downslope. 2. Debris flow has uniform, general medium backscatter, sometimes showing marbling/lineation in lobate form. 3. Turbidity current is characterized by low backscatter confined to the channel as acoustic signal is attenuated. Regional tectonics must be the dominating factor that controls deposition pattern in this area. 展开更多
关键词 side-scan sonar image sedimentary processes deep-sea channel Nankai Trough
下载PDF
侧扫声呐识别沉船影像的迁移学习卷积神经网络法 被引量:9
3
作者 汤寓麟 金绍华 +2 位作者 边刚 张永厚 李凡 《测绘学报》 EI CSCD 北大核心 2021年第2期260-269,共10页
侧扫声呐海底沉船图像识别是水下障碍物核查和失事船只搜救中的一项重要工作。针对传统侧扫声呐图像人工判读存在效率低、耗时长、资源消耗大及主观不确定性强和过分依赖经验等问题,本文尝试引入卷积神经网络的方法,同时考虑到侧扫声呐... 侧扫声呐海底沉船图像识别是水下障碍物核查和失事船只搜救中的一项重要工作。针对传统侧扫声呐图像人工判读存在效率低、耗时长、资源消耗大及主观不确定性强和过分依赖经验等问题,本文尝试引入卷积神经网络的方法,同时考虑到侧扫声呐沉船图像属于小样本数据集,提出一种基于迁移学习的卷积神经网络侧扫声呐沉船图像自动识别方法。通过归一化处理、图像增强等方式扩充样本数据,并以4∶1的比例划分训练集和测试集,同时参照经典VGG-16模型,根据侧扫声呐沉船数据集特点设计了改进的模型,然后将在ImageNet图像数据集上训练好的改进模型在小样本侧扫声呐沉船数据集上采用冻结和训练、微调两种迁移学习方式进行学习和试验,并与全新学习进行比较分析,结果表明,3种方法对侧扫声呐沉船图像识别的准确率分别为93.71%、84.49%和90.58%,其中第1种迁移学习方法准确率最高,模型收敛速度最快,且AP值最高为92.45%,分别比第2种迁移学习方法和全新学习高了8.06%和3.06%,在提高模型的识别能力和训练效率方面效果更佳,验证了该方法的有效性与可行性,具有一定实际指导意义。 展开更多
关键词 侧扫声呐海底沉船 图像识别 迁移学习 卷积神经网络 VGG-16
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部