期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Development of the Atomic Force Microscopy Research Technique for the Nanostructures on the Vertical Edge of Thin Insulating Film
1
作者 Egor Gorlachev Valeriy Levin Viktor Mordvintsev 《Journal of Physical Science and Application》 2013年第1期18-26,共9页
In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM mic... In this work, a development of a method of a thin insulating film vertical edge visualization of metal-insulator-metal (MIM) memory cells with atomic force microscopy (AFM) using a modified Omicron UHV AFM/STM microscope was performed. This included a development of a technique of the AFM visualization of segments of a vertical edge of thin insulator SiO2 film structures on a conductive substrate, a comparison of AFM topography and current profilograms for the edge profiles, and an Omicron microscope custom upgrade. The latter allowed us to perform the AFM probe positioning to any specific area of the sample in the scanning plane by two coordinates with an order of precision of 1 micrometer. The method is illustrated with the experimental results of AFM investigations of the special MIM structures with comb-type topology, and of the cells of functioning memory matrices with 20 nm thin silicon dioxide film open edge perimeter and TiN lower electrode, including topography/current profilograms. As a conclusion, our ongoing work on the AFM visualization of a complete perimeter of a SiO2 open edge of memory cells with a special new topology with a goal to visualize conductive phase nanoparticles during switching processes is briefly overviewed. 展开更多
关键词 Atomic force microscopy piezoelectric micro motor metal-insulator-metal memory cell sidewall profile.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部