We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can prod...We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can produce a big alteration on its solution (if it exists). We shall define a wavelet solution to obtain the well-posed approximating problem in the scaling space Vj. In the previous papers, the theoretical results concerning the error estimate are L2-norm and the solutions aren't stable at x = 0. However, in practice, the solution is usually required to be stable at the boundary. In this paper we shall give uniform convergence on interval x ∈ [0, 1].展开更多
基金Supported by Beijing Natural Science Foundation (Grant Nos. 1092003 and 1082003)National Natural Science Foundation of China (Grant No. 10871012)+1 种基金Beijing Educational Committee Foundation (Grant No. 00600054R1002)Science and Technology Innovation Foundation of Beijing Educational Committee (Grant No. 00600054K2009)
文摘We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can produce a big alteration on its solution (if it exists). We shall define a wavelet solution to obtain the well-posed approximating problem in the scaling space Vj. In the previous papers, the theoretical results concerning the error estimate are L2-norm and the solutions aren't stable at x = 0. However, in practice, the solution is usually required to be stable at the boundary. In this paper we shall give uniform convergence on interval x ∈ [0, 1].