As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performanc...As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performance,but the optimization problem was still perplexing the researchers due to the complexity of sieving process.In the present paper,the sieving process of elliptically vibrating screen was numerically simulated based on the Discrete Element Method(DEM).The production quality and the processing capacity of vibrating screen were measured by the screening efficiency and the screening time,respectively.The sieving parameters including the length of semi-major axis,the length ratio of two semi-axes,the vibration frequency,the inclination angle,the vibration direction angle and the motion direction of screen deck were investigated.Firstly,the Gradient Boosting Decision Trees(GBDT)algorithm was adopted in the modelling task of screening data.The trained prediction models with sufficient generalization performance were obtained,and the relative importance of six parameters for both the screening indexes was revealed.After that,a hybrid MACO-GBDT algorithm based on the Ant Colony Optimization(ACO)was proposed for optimizing the sieving performance of vibrating screen.Both the single objective optimization of screening efficiency and the stepwise optimization of screening results were conducted.Ultimately,the reliability of the MACO-GBDT algorithm were examined by the numerical experiments.The optimization strategy provided in this work would be helpful for the parameter design and the performance improvement of vibrating screens.展开更多
Screening is a technique that is extensively adopted for the separation of discrete materials according to particle characteristics such as size and shape.Wide application of the discrete element method has sparked mu...Screening is a technique that is extensively adopted for the separation of discrete materials according to particle characteristics such as size and shape.Wide application of the discrete element method has sparked much research on the vibrating screen,which is a screening apparatus having a specific vibration mode.The shape of the screen surface is a critical factor affecting the sieving performance of the vibrating screen.In this paper,a stepwise optimization method is employed to optimize the screen surface shape of the vibrating screen in discrete element modeling to obtain a high screening efficiency and large processing capacity simultaneously.Adopting this optimization method,a new curved screen with five decks having various inclination angles is presented.Numerical simulations and prototype experiments are conducted to verify the superior sieving performance of the new curved screen.Experimental results clearly show that the new curved screen greatly outperforms three commonly used screens in terms of sieving performance.The conclusions and methodologies of this work will benefit the design and improvement of vibrating screens.展开更多
基金The research work is financially supported by National Natural Science Foundation of China(No.51775113)Natural Science Foundation of Fujian Province(No.2017J01675)+2 种基金51st Scientific Research Fund Program of Fujian University of Technology(No.GY-Z160139)Key Research Platform of NC Equipment and Technology in Fujian Province(No.2014H2002)Subsidized Project for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.17013080007).
文摘As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performance,but the optimization problem was still perplexing the researchers due to the complexity of sieving process.In the present paper,the sieving process of elliptically vibrating screen was numerically simulated based on the Discrete Element Method(DEM).The production quality and the processing capacity of vibrating screen were measured by the screening efficiency and the screening time,respectively.The sieving parameters including the length of semi-major axis,the length ratio of two semi-axes,the vibration frequency,the inclination angle,the vibration direction angle and the motion direction of screen deck were investigated.Firstly,the Gradient Boosting Decision Trees(GBDT)algorithm was adopted in the modelling task of screening data.The trained prediction models with sufficient generalization performance were obtained,and the relative importance of six parameters for both the screening indexes was revealed.After that,a hybrid MACO-GBDT algorithm based on the Ant Colony Optimization(ACO)was proposed for optimizing the sieving performance of vibrating screen.Both the single objective optimization of screening efficiency and the stepwise optimization of screening results were conducted.Ultimately,the reliability of the MACO-GBDT algorithm were examined by the numerical experiments.The optimization strategy provided in this work would be helpful for the parameter design and the performance improvement of vibrating screens.
基金financially supported by the Natural Science Foundation of Jiangxi Province(grant No.20192BAB206023)National Natural Science Foundation of China(grant No.51775113)+3 种基金Natural Science Foundation of Fujian Province(grant No.2017J01675)Key Projects of Fujian Provincial Youth Natural Fund(grant No.JZ160460)51st Scientific Research Fund Program of Fujian University of Technology(grant No.GY-Z160139)Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University(grant Nos.1601103005 and 17013080007).
文摘Screening is a technique that is extensively adopted for the separation of discrete materials according to particle characteristics such as size and shape.Wide application of the discrete element method has sparked much research on the vibrating screen,which is a screening apparatus having a specific vibration mode.The shape of the screen surface is a critical factor affecting the sieving performance of the vibrating screen.In this paper,a stepwise optimization method is employed to optimize the screen surface shape of the vibrating screen in discrete element modeling to obtain a high screening efficiency and large processing capacity simultaneously.Adopting this optimization method,a new curved screen with five decks having various inclination angles is presented.Numerical simulations and prototype experiments are conducted to verify the superior sieving performance of the new curved screen.Experimental results clearly show that the new curved screen greatly outperforms three commonly used screens in terms of sieving performance.The conclusions and methodologies of this work will benefit the design and improvement of vibrating screens.