Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa...Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.展开更多
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japane...Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.展开更多
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La...Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.展开更多
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an...The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach.展开更多
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.展开更多
Sign language fills the communication gap for people with hearing and speaking ailments.It includes both visual modalities,manual gestures consisting of movements of hands,and non-manual gestures incorporating body mo...Sign language fills the communication gap for people with hearing and speaking ailments.It includes both visual modalities,manual gestures consisting of movements of hands,and non-manual gestures incorporating body movements including head,facial expressions,eyes,shoulder shrugging,etc.Previously both gestures have been detected;identifying separately may have better accuracy,butmuch communicational information is lost.Aproper sign language mechanism is needed to detect manual and non-manual gestures to convey the appropriate detailed message to others.Our novel proposed system contributes as Sign LanguageAction Transformer Network(SLATN),localizing hand,body,and facial gestures in video sequences.Here we are expending a Transformer-style structural design as a“base network”to extract features from a spatiotemporal domain.Themodel impulsively learns to track individual persons and their action context inmultiple frames.Furthermore,a“head network”emphasizes hand movement and facial expression simultaneously,which is often crucial to understanding sign language,using its attention mechanism for creating tight bounding boxes around classified gestures.The model’s work is later compared with the traditional identification methods of activity recognition.It not only works faster but achieves better accuracy as well.Themodel achieves overall 82.66%testing accuracy with a very considerable performance of computation with 94.13 Giga-Floating Point Operations per Second(G-FLOPS).Another contribution is a newly created dataset of Pakistan Sign Language forManual and Non-Manual(PkSLMNM)gestures.展开更多
Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The...Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The inter-action via Sign language becomes a fruitful means of communication for hearing and speech impaired persons.A Hand gesture recognition systemfinds helpful for deaf and dumb people by making use of human computer interface(HCI)and convolutional neural networks(CNN)for identifying the static indications of Indian Sign Language(ISL).This study introduces a shark smell optimization with deep learning based automated sign language recognition(SSODL-ASLR)model for hearing and speaking impaired people.The presented SSODL-ASLR technique majorly concentrates on the recognition and classification of sign lan-guage provided by deaf and dumb people.The presented SSODL-ASLR model encompasses a two stage process namely sign language detection and sign lan-guage classification.In thefirst stage,the Mask Region based Convolution Neural Network(Mask RCNN)model is exploited for sign language recognition.Sec-ondly,SSO algorithm with soft margin support vector machine(SM-SVM)model can be utilized for sign language classification.To assure the enhanced classifica-tion performance of the SSODL-ASLR model,a brief set of simulations was car-ried out.The extensive results portrayed the supremacy of the SSODL-ASLR model over other techniques.展开更多
The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neu...The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.展开更多
This document presents a computer vision system for the automatic recognition of Mexican Sign Language (MSL), based on normalized moments as invariant (to translation and scale transforms) descriptors, using artificia...This document presents a computer vision system for the automatic recognition of Mexican Sign Language (MSL), based on normalized moments as invariant (to translation and scale transforms) descriptors, using artificial neural networks as pattern recognition model. An experimental feature selection was performed to reduce computational costs due to this work focusing on automatic recognition. The computer vision system includes four LED-reflectors of 700 lumens each in order to improve image acquisition quality;this illumination system allows reducing shadows in each sign of the MSL. MSL contains 27 signs in total but 6 of them are expressed with movement;this paper presents a framework for the automatic recognition of 21 static signs of MSL. The proposed system achieved 93% of recognition rate.展开更多
Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. ...Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. In this paper we report the first continuous Arabic Sign Language by building on existing research in feature extraction and pattern recognition. The development of the presented work required collecting a continuous Arabic Sign Language database which we designed and recorded in cooperation with a sign language expert. We intend to make the collected database available for the research community. Our system which we based on spatio-temporal feature extraction and hidden Markov models has resulted in an average word recognition rate of 94%, keeping in the mind the use of a high perplex-ity vocabulary and unrestrictive grammar. We compare our proposed work against existing sign language techniques based on accumulated image difference and motion estimation. The experimental results section shows that the pro-posed work outperforms existing solutions in terms of recognition accuracy.展开更多
Hand gesture recognition system is considered as a way for more intuitive and proficient human computer interaction tool. The range of applications includes virtual prototyping, sign language analysis and medical trai...Hand gesture recognition system is considered as a way for more intuitive and proficient human computer interaction tool. The range of applications includes virtual prototyping, sign language analysis and medical training. In this paper, an efficient Indian Sign Language Recognition System (ISLR) is proposed for deaf and dump people using hand gesture images. The proposed ISLR system is considered as a pattern recognition technique that has two important modules: feature extraction and classification. The joint use of Discrete Wavelet Transform (DWT) based feature extraction and nearest neighbour classifier is used to recognize the sign language. The experimental results show that the proposed hand gesture recognition system achieves maximum 99.23% classification accuracy while using cosine distance classifier.展开更多
This paper is a pilot study that investigates the attitudes towards the official recognition of Hong Kong Sign Language(HKSL)by Hong Kong citizens.We used video-chat software(mainly WhatsApp,and Facebook Messenger,but...This paper is a pilot study that investigates the attitudes towards the official recognition of Hong Kong Sign Language(HKSL)by Hong Kong citizens.We used video-chat software(mainly WhatsApp,and Facebook Messenger,but also FaceTime)to conduct long-distance semi-structured interviews with 30 participants grouped as deaf,hearing-related(hearing people that are closely involved in the Deaf community),and hearing-unrelated(hearing people that have little contact with deaf people and the Deaf community).Results show that the majority of participants(N=22)holds a supportive attitude towards the recognition of HKSL;Five participants hold a neutral position,and three participants hold a negative attitude towards it.We discussed each type of attitude in detail.Results show that participants’attitudes are positively related to their awareness of deaf people’s need,the understanding of‘language recognition’,and personal world views.In other words,the more participants are aware,the more they foster official recognition,at least as a general trend.Results also indicate that hearing people who are not involved in the Deaf community know very little about deaf people and the Deaf community,in general.At the end of the paper,we also reflect on two issues:we argue that the standardization of HKSL plays an important role in deaf education and empowering citizenship awareness and participation.展开更多
Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seaml...Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.展开更多
Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enha...Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enhanced outcomes.But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks.This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning(ASLGC-DHOML)model.The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures.The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature vectors using the densely connected network(DenseNet169)model.For gesture recognition and classification,a multilayer perceptron(MLP)classifier is exploited to recognize and classify the existence of sign language gestures.Lastly,the DHO algorithm is utilized for parameter optimization of the MLP model.The experimental results of the ASLGC-DHOML model are tested and the outcomes are inspected under distinct aspects.The comparison analysis highlighted that the ASLGC-DHOML method has resulted in enhanced gesture classification results than other techniques with maximum accuracy of 92.88%.展开更多
American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired perso...American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.展开更多
This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and f...This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.展开更多
This paper realizes a sign language-to-speech conversion system to solve the communication problem between healthy people and speech disorders. 30 kinds of different static sign languages are firstly recognized by com...This paper realizes a sign language-to-speech conversion system to solve the communication problem between healthy people and speech disorders. 30 kinds of different static sign languages are firstly recognized by combining the support vector machine (SVM) with a restricted Boltzmann machine (RBM) based regulation and a feedback fine-tuning of the deep model. The text of sign language is then obtained from the recognition results. A context-dependent label is generated from the recognized text of sign language by a text analyzer. Meanwhile,a hiddenMarkov model (HMM) basedMandarin-Tibetan bilingual speech synthesis system is developed by using speaker adaptive training.The Mandarin speech or Tibetan speech is then naturally synthesized by using context-dependent label generated from the recognized sign language. Tests show that the static sign language recognition rate of the designed system achieves 93.6%. Subjective evaluation demonstrates that synthesized speech can get 4.0 of the mean opinion score (MOS).展开更多
This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting t...This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.展开更多
基金supported from the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.
基金supported by the Competitive Research Fund of the University of Aizu,Japan.
文摘Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.
基金supported by National Social Science Foundation Annual Project“Research on Evaluation and Improvement Paths of Integrated Development of Disabled Persons”(Grant No.20BRK029)the National Language Commission’s“14th Five-Year Plan”Scientific Research Plan 2023 Project“Domain Digital Language Service Resource Construction and Key Technology Research”(YB145-72)the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing.
基金Supported by the National Natural Science Foundation of China(62072334).
文摘The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach.
基金supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
文摘Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.
文摘Sign language fills the communication gap for people with hearing and speaking ailments.It includes both visual modalities,manual gestures consisting of movements of hands,and non-manual gestures incorporating body movements including head,facial expressions,eyes,shoulder shrugging,etc.Previously both gestures have been detected;identifying separately may have better accuracy,butmuch communicational information is lost.Aproper sign language mechanism is needed to detect manual and non-manual gestures to convey the appropriate detailed message to others.Our novel proposed system contributes as Sign LanguageAction Transformer Network(SLATN),localizing hand,body,and facial gestures in video sequences.Here we are expending a Transformer-style structural design as a“base network”to extract features from a spatiotemporal domain.Themodel impulsively learns to track individual persons and their action context inmultiple frames.Furthermore,a“head network”emphasizes hand movement and facial expression simultaneously,which is often crucial to understanding sign language,using its attention mechanism for creating tight bounding boxes around classified gestures.The model’s work is later compared with the traditional identification methods of activity recognition.It not only works faster but achieves better accuracy as well.Themodel achieves overall 82.66%testing accuracy with a very considerable performance of computation with 94.13 Giga-Floating Point Operations per Second(G-FLOPS).Another contribution is a newly created dataset of Pakistan Sign Language forManual and Non-Manual(PkSLMNM)gestures.
文摘Sign language is mainly utilized in communication with people who have hearing disabilities.Sign language is used to communicate with people hav-ing developmental impairments who have some or no interaction skills.The inter-action via Sign language becomes a fruitful means of communication for hearing and speech impaired persons.A Hand gesture recognition systemfinds helpful for deaf and dumb people by making use of human computer interface(HCI)and convolutional neural networks(CNN)for identifying the static indications of Indian Sign Language(ISL).This study introduces a shark smell optimization with deep learning based automated sign language recognition(SSODL-ASLR)model for hearing and speaking impaired people.The presented SSODL-ASLR technique majorly concentrates on the recognition and classification of sign lan-guage provided by deaf and dumb people.The presented SSODL-ASLR model encompasses a two stage process namely sign language detection and sign lan-guage classification.In thefirst stage,the Mask Region based Convolution Neural Network(Mask RCNN)model is exploited for sign language recognition.Sec-ondly,SSO algorithm with soft margin support vector machine(SM-SVM)model can be utilized for sign language classification.To assure the enhanced classifica-tion performance of the SSODL-ASLR model,a brief set of simulations was car-ried out.The extensive results portrayed the supremacy of the SSODL-ASLR model over other techniques.
文摘The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.
文摘This document presents a computer vision system for the automatic recognition of Mexican Sign Language (MSL), based on normalized moments as invariant (to translation and scale transforms) descriptors, using artificial neural networks as pattern recognition model. An experimental feature selection was performed to reduce computational costs due to this work focusing on automatic recognition. The computer vision system includes four LED-reflectors of 700 lumens each in order to improve image acquisition quality;this illumination system allows reducing shadows in each sign of the MSL. MSL contains 27 signs in total but 6 of them are expressed with movement;this paper presents a framework for the automatic recognition of 21 static signs of MSL. The proposed system achieved 93% of recognition rate.
文摘Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. In this paper we report the first continuous Arabic Sign Language by building on existing research in feature extraction and pattern recognition. The development of the presented work required collecting a continuous Arabic Sign Language database which we designed and recorded in cooperation with a sign language expert. We intend to make the collected database available for the research community. Our system which we based on spatio-temporal feature extraction and hidden Markov models has resulted in an average word recognition rate of 94%, keeping in the mind the use of a high perplex-ity vocabulary and unrestrictive grammar. We compare our proposed work against existing sign language techniques based on accumulated image difference and motion estimation. The experimental results section shows that the pro-posed work outperforms existing solutions in terms of recognition accuracy.
文摘Hand gesture recognition system is considered as a way for more intuitive and proficient human computer interaction tool. The range of applications includes virtual prototyping, sign language analysis and medical training. In this paper, an efficient Indian Sign Language Recognition System (ISLR) is proposed for deaf and dump people using hand gesture images. The proposed ISLR system is considered as a pattern recognition technique that has two important modules: feature extraction and classification. The joint use of Discrete Wavelet Transform (DWT) based feature extraction and nearest neighbour classifier is used to recognize the sign language. The experimental results show that the proposed hand gesture recognition system achieves maximum 99.23% classification accuracy while using cosine distance classifier.
文摘This paper is a pilot study that investigates the attitudes towards the official recognition of Hong Kong Sign Language(HKSL)by Hong Kong citizens.We used video-chat software(mainly WhatsApp,and Facebook Messenger,but also FaceTime)to conduct long-distance semi-structured interviews with 30 participants grouped as deaf,hearing-related(hearing people that are closely involved in the Deaf community),and hearing-unrelated(hearing people that have little contact with deaf people and the Deaf community).Results show that the majority of participants(N=22)holds a supportive attitude towards the recognition of HKSL;Five participants hold a neutral position,and three participants hold a negative attitude towards it.We discussed each type of attitude in detail.Results show that participants’attitudes are positively related to their awareness of deaf people’s need,the understanding of‘language recognition’,and personal world views.In other words,the more participants are aware,the more they foster official recognition,at least as a general trend.Results also indicate that hearing people who are not involved in the Deaf community know very little about deaf people and the Deaf community,in general.At the end of the paper,we also reflect on two issues:we argue that the standardization of HKSL plays an important role in deaf education and empowering citizenship awareness and participation.
基金funded by Researchers Supporting Project Number(RSPD2024 R947),King Saud University,Riyadh,Saudi Arabia.
文摘Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura Universitysupporting this work by Grant Code:22UQU4310373DSR54.
文摘Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities.Several models have been available in the literature for sign language detection and classification for enhanced outcomes.But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks.This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning(ASLGC-DHOML)model.The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures.The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature vectors using the densely connected network(DenseNet169)model.For gesture recognition and classification,a multilayer perceptron(MLP)classifier is exploited to recognize and classify the existence of sign language gestures.Lastly,the DHO algorithm is utilized for parameter optimization of the MLP model.The experimental results of the ASLGC-DHOML model are tested and the outcomes are inspected under distinct aspects.The comparison analysis highlighted that the ASLGC-DHOML method has resulted in enhanced gesture classification results than other techniques with maximum accuracy of 92.88%.
基金This research was supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(NRF-2019R1A2C1084308).
文摘American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.
文摘This paper presents two systems for recognizing static signs (digits) from American Sign Language (ASL). These systems avoid the use color marks, or gloves, using instead, low-pass and high-pass filters in space and frequency domains, and color space transformations. First system used rotational signatures based on a correlation operator;minimum distance was used for the classification task. Second system computed the seven Hu invariants from binary images;these descriptors fed to a Multi-Layer Perceptron (MLP) in order to recognize the 9 different classes. First system achieves 100% of recognition rate with leaving-one-out validation and second experiment performs 96.7% of recognition rate with Hu moments and 100% using 36 normalized moments and k-fold cross validation.
基金The research leading to these results was partly funded by the National Natural Science Foundation of China (Grant No. 61263036, 61262055), Gansu Science Fund for Distinguished Young Scholars (Grant No. 1210RJDA007) and Natural Science Foundation of Gansu (Grant No. 1506RJYA126).
文摘This paper realizes a sign language-to-speech conversion system to solve the communication problem between healthy people and speech disorders. 30 kinds of different static sign languages are firstly recognized by combining the support vector machine (SVM) with a restricted Boltzmann machine (RBM) based regulation and a feedback fine-tuning of the deep model. The text of sign language is then obtained from the recognition results. A context-dependent label is generated from the recognized text of sign language by a text analyzer. Meanwhile,a hiddenMarkov model (HMM) basedMandarin-Tibetan bilingual speech synthesis system is developed by using speaker adaptive training.The Mandarin speech or Tibetan speech is then naturally synthesized by using context-dependent label generated from the recognized sign language. Tests show that the static sign language recognition rate of the designed system achieves 93.6%. Subjective evaluation demonstrates that synthesized speech can get 4.0 of the mean opinion score (MOS).
文摘This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.