Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineat...Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.展开更多
In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multipl...In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.展开更多
Passive radar detects moving targets by Cross Ambiguity Function (CAF), which is based on the cross correlation process of the direct-path signal in reference channel and echo signal in receive channel. Thus, the perf...Passive radar detects moving targets by Cross Ambiguity Function (CAF), which is based on the cross correlation process of the direct-path signal in reference channel and echo signal in receive channel. Thus, the performance of direct-path signal is important to system performance for this type of radar. While the Signal to Noise Ratio (SNR) of direct-path signal is low, it will deteriorate the detection performance. In this paper, how SNR of direct-path signal induces degradation on the SNR of CAF, and how the integration gain affects by integration time are analyzed, both with theoretical analysis and numerical simulation, which are valuable for the R&D of passive radar.展开更多
The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ...The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.展开更多
Acoustic Doppler current profiler (ADCP) uses acoustic energy directed along narrow beams for current measurement. In conventional method, the quantity of sampling affects the precision of fast Fourier transform (...Acoustic Doppler current profiler (ADCP) uses acoustic energy directed along narrow beams for current measurement. In conventional method, the quantity of sampling affects the precision of fast Fourier transform (FFT) algorithm, and the algorithm needs a large amount of data to process. A novel frequency estimator.enhanced least mean square (ELMS) algorithm for a single complex sinusoid in complex white Gaussian noise, is proposed in ADCP system. As sampling frequency equals 120 krad/s and the sampling number equals 240. the minimum resolving is 0. 5 krad/s. All variances keep 11.11%. ELMS algorithm needs less data than FFT. And the robust algorithm can estimate the spectrum true value to 99.9% when the signal to noise ratio (SNR) is equal to 0 dB. Experiments prove that the estimation values will diverge much from the ideal when SNR is less than -6 dB.展开更多
If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contac...If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.展开更多
An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformat...An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance.展开更多
The influence of the nonlinear propagation effect on three 400 Gb/s/ch (400G) optical fiber communication systems with typical modulation formats, dual-carrier 16-quadrature amplitude modulation (16QAM), single-ca...The influence of the nonlinear propagation effect on three 400 Gb/s/ch (400G) optical fiber communication systems with typical modulation formats, dual-carrier 16-quadrature amplitude modulation (16QAM), single-carrier 16QAM (single-16QAM), and four-carrier quadrature phase-shift keying, are investigated. The received optical signal-to-noise ratio (OSNR), affected by the nonlinear interference noise together with the amplified spontaneous emission noise, are compared with three 400G systems and a standard 100 Gb/s/ch system by numerical simulations. Both single channel and multichannel cases are considered. Single-16QAM is found to have the best OSNR among those modulation formats.展开更多
The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique base...The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique based on Faraday modulation combined with the optical differential method to measure an extremely small polari- zation rotation angle with high sensitivity. The theoretical and experimental results show that common mode noise is reduced appreciably and signal to noise ratio is enhanced. The effectiveness of this technique has been demonstrated by measuring the Verdet constant of terbium gallium garnet glass and measuring the small polari- zation rotation angle. A sensitivity of enhancement of one order of magnitude has been achieved using differ- ential detection based on Faraday modulation.展开更多
Based on the peak to valley ratio(PTVR) of the average magnitude difference function(AMDF), we present a novel optical signal to noise ratio(OSNR) and symbol rate(SR) estimation method for commonly used auxili...Based on the peak to valley ratio(PTVR) of the average magnitude difference function(AMDF), we present a novel optical signal to noise ratio(OSNR) and symbol rate(SR) estimation method for commonly used auxiliary amplitude modulations(AAMs). Moreover, it is demonstrated that the influence of chromatic dispersion(CD)on the method can be mitigated by maximizing the PTVR of the AMDF with additional tunable dispersion compensators. The results of simulations show that the OSNR estimation error can be kept within 0.8 dB in the wide OSNR range of(12, 32) dB, while the SR estimation error is below 0.079% for four widely used10 Gsymbol/s AAM signals.展开更多
A numerical design on the triangular photonic crystal fiber (PCF) based backward multi-pump Raman amplifier is presented. It is demonstrated that high flat Raman gain can be reached based on PCF. Influences of diffe...A numerical design on the triangular photonic crystal fiber (PCF) based backward multi-pump Raman amplifier is presented. It is demonstrated that high flat Raman gain can be reached based on PCF. Influences of different geometric parameters and germanium doping concentrations on the Raman net gain, amplified spontaneous emission (ASE) noise and double Rayleigh backscattering (DRBS) of the signal have been analyzed. For optimizing crystal fiber Raman amplifier (FRA), there is tradeoff between the geometric parameter and germanium doping concentration of triangular PCF. The results show that PCF is an appropriate candidate for high gain Raman amplifiers.展开更多
Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were...Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.展开更多
The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used...The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) alg...The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) algorithm processed projections in sequentially orthogonal order which reduced the dependency among the projections and speeds up the convergences. Additionally, the over-relaxation parameter in the direction defined by the RA-SAGE algorithm was also applied to obtain fast convergence to a globally maximum likelihood (ML) solution. In experiments, the RA-SAGE algorithm and the classical SAGE algorithm were compared in the application to positron emission tomography (PET) image reconstruction. Simulation results showed that RA-SAGE had better performance than SAGE in both convergence and image quality.展开更多
Images are frequently affected because of blurring,and data loss occurred by sampling and noise occurrence.The images are getting blurred because of object movement in the scenario,atmospheric misrepresentations,and o...Images are frequently affected because of blurring,and data loss occurred by sampling and noise occurrence.The images are getting blurred because of object movement in the scenario,atmospheric misrepresentations,and optical aberrations.The main objective of image restoration is to evaluate the original image from the corrupted data.To overcome this issue,the multiobjective reptile search algorithm is proposed for performing an effective image deblurring and restoration(MORSA-IDR).The proposed MORSA is used in two different processes such as threshold and kernel parameter calculation.In that,threshold values are used for detecting and replacing the noisy pixel removal using deep residual network,and estimation of kernel is performed for deblurring the images.The main objective of the proposed MORSA-IDR is to enhance the process of deblurring for recovering low-level contextual information.The MORSA-IDR is evaluated using peak signal noise ratio(PSNR)and structural similarity index.The existing researches such as enhanced local maximum intensity(ELMI)prior and deep unrolling for blind deblurring(DUBLID)are used to evaluate the MORSA-IDR.The PSNR of MORSA-IDR for image 6 is 30.98 dB,which is high when compared with the ELMI and DUBLID.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
文摘Highlighting and analyzing the geological features of faults and fractures in seismic data is particularly important for hydrocarbon exploration and exploitation since they are often essential for finding and delineating reservoirs. We apply edge-preserving smoothing (EPS) to seismic processing and propose a most homogeneous dip-scanning method. The method preserves the geological features, eliminate random noise efficiently, obtain dip information, and improve the accuracy of identifying the oil and gas traps.
基金support by the National Natural Science Foundation of China (61401360)the Fundamental Research Funds for the Central Universities (3102017zy026)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM6017)the Scientific Research Program Funded by Shaanxi Provincial Education Department (16JK1702)
文摘In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.
文摘Passive radar detects moving targets by Cross Ambiguity Function (CAF), which is based on the cross correlation process of the direct-path signal in reference channel and echo signal in receive channel. Thus, the performance of direct-path signal is important to system performance for this type of radar. While the Signal to Noise Ratio (SNR) of direct-path signal is low, it will deteriorate the detection performance. In this paper, how SNR of direct-path signal induces degradation on the SNR of CAF, and how the integration gain affects by integration time are analyzed, both with theoretical analysis and numerical simulation, which are valuable for the R&D of passive radar.
基金supported by the National Natural Science Foundation of China(1127301761401207+2 种基金6147119661501240)the College Graduate Scientific Research Innovation Fund in Jiangsu Province of China(KYLX16_0447)
基金National Natural Science Foundation of China (40074007).
文摘The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.
基金Supported by"863"Foundation of China (No.863-818-06-03).
文摘Acoustic Doppler current profiler (ADCP) uses acoustic energy directed along narrow beams for current measurement. In conventional method, the quantity of sampling affects the precision of fast Fourier transform (FFT) algorithm, and the algorithm needs a large amount of data to process. A novel frequency estimator.enhanced least mean square (ELMS) algorithm for a single complex sinusoid in complex white Gaussian noise, is proposed in ADCP system. As sampling frequency equals 120 krad/s and the sampling number equals 240. the minimum resolving is 0. 5 krad/s. All variances keep 11.11%. ELMS algorithm needs less data than FFT. And the robust algorithm can estimate the spectrum true value to 99.9% when the signal to noise ratio (SNR) is equal to 0 dB. Experiments prove that the estimation values will diverge much from the ideal when SNR is less than -6 dB.
文摘If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.
基金Supported by the National Natural Science Foundation of China(64601500)
文摘An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance.
基金supported by the National Key Scientific Instrument and Equipment Development Project of China under Grant No.2014YQ510403
文摘The influence of the nonlinear propagation effect on three 400 Gb/s/ch (400G) optical fiber communication systems with typical modulation formats, dual-carrier 16-quadrature amplitude modulation (16QAM), single-carrier 16QAM (single-16QAM), and four-carrier quadrature phase-shift keying, are investigated. The received optical signal-to-noise ratio (OSNR), affected by the nonlinear interference noise together with the amplified spontaneous emission noise, are compared with three 400G systems and a standard 100 Gb/s/ch system by numerical simulations. Both single channel and multichannel cases are considered. Single-16QAM is found to have the best OSNR among those modulation formats.
基金supported by the National Key R&D Program of China(No.2017YFB0503100)the National Science Foundation of China(NSFC)(No.61227902)
文摘The measurement of an extremely small magneto-optical polarization rotation angle with high sensitivity is integral to many scientific and technological applications. In this Letter, we have presented a technique based on Faraday modulation combined with the optical differential method to measure an extremely small polari- zation rotation angle with high sensitivity. The theoretical and experimental results show that common mode noise is reduced appreciably and signal to noise ratio is enhanced. The effectiveness of this technique has been demonstrated by measuring the Verdet constant of terbium gallium garnet glass and measuring the small polari- zation rotation angle. A sensitivity of enhancement of one order of magnitude has been achieved using differ- ential detection based on Faraday modulation.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.61374008
文摘Based on the peak to valley ratio(PTVR) of the average magnitude difference function(AMDF), we present a novel optical signal to noise ratio(OSNR) and symbol rate(SR) estimation method for commonly used auxiliary amplitude modulations(AAMs). Moreover, it is demonstrated that the influence of chromatic dispersion(CD)on the method can be mitigated by maximizing the PTVR of the AMDF with additional tunable dispersion compensators. The results of simulations show that the OSNR estimation error can be kept within 0.8 dB in the wide OSNR range of(12, 32) dB, while the SR estimation error is below 0.079% for four widely used10 Gsymbol/s AAM signals.
文摘A numerical design on the triangular photonic crystal fiber (PCF) based backward multi-pump Raman amplifier is presented. It is demonstrated that high flat Raman gain can be reached based on PCF. Influences of different geometric parameters and germanium doping concentrations on the Raman net gain, amplified spontaneous emission (ASE) noise and double Rayleigh backscattering (DRBS) of the signal have been analyzed. For optimizing crystal fiber Raman amplifier (FRA), there is tradeoff between the geometric parameter and germanium doping concentration of triangular PCF. The results show that PCF is an appropriate candidate for high gain Raman amplifiers.
文摘Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2007CB209603)
文摘The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
文摘The one-block version of ordered subsets (OS) techniques was used to accelerate the convergent rate of the space-alternating generalized expectation-maximization (SAGE) algorithm. The new row-action SAGE (RA-SAGE) algorithm processed projections in sequentially orthogonal order which reduced the dependency among the projections and speeds up the convergences. Additionally, the over-relaxation parameter in the direction defined by the RA-SAGE algorithm was also applied to obtain fast convergence to a globally maximum likelihood (ML) solution. In experiments, the RA-SAGE algorithm and the classical SAGE algorithm were compared in the application to positron emission tomography (PET) image reconstruction. Simulation results showed that RA-SAGE had better performance than SAGE in both convergence and image quality.
文摘Images are frequently affected because of blurring,and data loss occurred by sampling and noise occurrence.The images are getting blurred because of object movement in the scenario,atmospheric misrepresentations,and optical aberrations.The main objective of image restoration is to evaluate the original image from the corrupted data.To overcome this issue,the multiobjective reptile search algorithm is proposed for performing an effective image deblurring and restoration(MORSA-IDR).The proposed MORSA is used in two different processes such as threshold and kernel parameter calculation.In that,threshold values are used for detecting and replacing the noisy pixel removal using deep residual network,and estimation of kernel is performed for deblurring the images.The main objective of the proposed MORSA-IDR is to enhance the process of deblurring for recovering low-level contextual information.The MORSA-IDR is evaluated using peak signal noise ratio(PSNR)and structural similarity index.The existing researches such as enhanced local maximum intensity(ELMI)prior and deep unrolling for blind deblurring(DUBLID)are used to evaluate the MORSA-IDR.The PSNR of MORSA-IDR for image 6 is 30.98 dB,which is high when compared with the ELMI and DUBLID.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.