期刊文献+
共找到6,873篇文章
< 1 2 250 >
每页显示 20 50 100
Na^(+)/K^(+)-ATPase:ion pump,signal transducer,or cytoprotective protein,and novel biological functions 被引量:2
1
作者 Songqiang Huang Wanting Dong +1 位作者 Xiaoqian Lin Jinsong Bian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2684-2697,共14页
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^... Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed. 展开更多
关键词 ANTIBODY biological functions cellular communication electrochemical gradient ion balance ion channels Na^(+)/K^(+)-ATPase neurological diseases neurotransmitter release signal transduction
下载PDF
Digital signal acquisition system for complex nuclear reaction experiments 被引量:1
2
作者 Wei-Liang Pu Yan-Lin Ye +1 位作者 Jian-Ling Lou Jia-Hao Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期124-133,共10页
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet... A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data. 展开更多
关键词 Digital signal acquisition system TRIGGER Programmable logic TIMESTAMP
下载PDF
Timosaponin AⅢ induces drug-metabolizing enzymes by activating constitutive androstane receptor (CAR) via dephosphorylation of the EGFR signaling pathway 被引量:1
3
作者 Muhammad Zubair Hafiz Jie Pan +4 位作者 Zhiwei Gao Ying Huo Haobin Wang Wei Liu Jian Yang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期382-396,共15页
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio... The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway. 展开更多
关键词 timosaponin AⅢ CAR metabolism enzyme ERK1/2 signaling pathway EGFR signaling pathway
下载PDF
Hypoglycemic mechanism of Tegillarca granosa polysaccharides on type 2 diabetic mice by altering gut microbiota and regulating the PI3K-akt signaling pathwaye 被引量:1
4
作者 Qihong Jiang Lin Chen +5 位作者 Rui Wang Yin Chen Shanggui Deng Guoxin Shen Shulai Liu Xingwei Xiang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期842-855,共14页
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2... Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical. 展开更多
关键词 Tegillarca granosa polysaccharide Type 2 diabetes mellitus Glycolipid metabolism PI3K/Akt signaling pathway
下载PDF
Fanlian Huazhuo Formula alleviates high-fat diet-induced nonalcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway 被引量:1
5
作者 Meng-Yuan Niu Geng-Ting Dong +9 位作者 Yi Li Qing Luo Liu Cao Xi-Min Wang Qi-Wen Wang Yi-Ting Wang Zhe Zhang Xi-Wen Zhong Wei-Bo Dai Le-Yu Li 《World Journal of Gastroenterology》 SCIE CAS 2024年第30期3584-3608,共25页
BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus... BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD. 展开更多
关键词 Fanlian Huazhuo Formula Nonalcoholic fatty liver disease AUTOPHAGY Apoptosis AMPKα/SREBP-1C signal pathway Oxidative stress
下载PDF
Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection
6
作者 Abbas Ali Hassan Fardin Abdali-Mohammadi 《Computers, Materials & Continua》 SCIE EI 2024年第10期971-983,共13页
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference... From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works. 展开更多
关键词 Heart diseases electrocardiogram signal signal correlation mutual information capsule neural networks
下载PDF
Overview on signal transduction cascades regulation roles of garlic and its bioactive constituents
7
作者 Ammad Ahmad Farooqi Iqra Mobeen +3 位作者 Rukset Attar Khalida I.Noel Baojun Xu William C.Cho 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2353-2362,共10页
High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and t... High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and their mechanistic regulation by dietary agents and bioactive molecules at unprecedented dimensionality and resolution.Extra-ordinary breakthroughs in the field of nutrigenomics have leveraged our understanding altogether to a new level of maturity.Interdisciplinary researchers have extensively analyzed health promoting and pharmacologically significant properties of garlic(Allium sativum).Importantly,garlic and its biologically active chemicals targeted oncogenic signaling cascades.In this mini-review we have attempted to summarize how garlic and its bioactive constituents regulated signal transduction cascades in cell culture studies and tumor-bearing mice. 展开更多
关键词 Cancer NUTRIGENOMICS signalING Apoptosis Allium sativum
下载PDF
Highly Efficient Back‑End‑of‑Line Compatible Flexible Si‑Based Optical Memristive Crossbar Array for Edge Neuromorphic Physiological Signal Processing and Bionic Machine Vision
8
作者 Dayanand Kumar Hanrui Li +5 位作者 Dhananjay D.Kumbhar Manoj Kumar Rajbhar Uttam Kumar Das Abdul Momin Syed Georgian Melinte Nazek El‑Atab 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期323-339,共17页
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and adv... The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications. 展开更多
关键词 Neuromorphic computing Electrophysiological signal Artificial vision system Image recognition MEMRISTOR
下载PDF
Enhanced extracellular production of alpha-lactalbumin from Bacillus subtilis through signal peptide and promoter screening
9
作者 Yuqi Zhu Pengdong Sun +6 位作者 Chunjian Li Yu Zhang Yu Wang Jingyuan Li Yanfeng Liu Jian Chen Yang Deng 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2310-2316,共7页
Alpha-lactalbumin(α-LA)is a major whey protein found in breast milk and plays a crucial role in the growth and development of infants.In this study,Bacillus subtilis RIK1285 harboring AprE signal peptide(SP)was selec... Alpha-lactalbumin(α-LA)is a major whey protein found in breast milk and plays a crucial role in the growth and development of infants.In this study,Bacillus subtilis RIK1285 harboring AprE signal peptide(SP)was selected as the original strain for the production ofα-LA.It was found thatα-LA was identified in the pellet after ultrasonic disruption and centrifugation instead of in the fermentation supernatant.The original strain most likely only producedα-LA intracellular,but not extracellular.To improve the expression and secretion ofα-LA in RIK1285,a library of 173 homologous SPs from the B.subtilis 168 genome was fused with target LALBA gene in the pBE-S vector and expressed extracellularly in RIK1285.SP YjcN was determined to be the best signal peptide.Bands in supernatant were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and purified by nickel column to calculate the highest yield signal peptide.In addition,different promoters(P_(aprE),P_(43),and P_(glv))were compared and applied.The results indicated that the strain RIK1285-pBE-P_(glv)-YjcN-LALBA had the highestα-LA yield,reaching 122.04μg/mL.This study demonstrates successful expression and secretion of humanα-LA in B.subtilis and establishes a foundation for simulating breast milk for infant formulas and developing bioengineered milk. 展开更多
关键词 Bacillus subtilis ALPHA-LACTALBUMIN Bioengineering milk signal peptide Promoter screening
下载PDF
Suppressing a mitochondrial calcium uniporter activates the calcium signaling pathway and promotes cell elongation in cotton
10
作者 Yujia Duan Xiaoguang Shang +4 位作者 Ruiping Tian Weixi Li Xiaohui Song Dayong Zhang Wangzhen Guo 《The Crop Journal》 SCIE CSCD 2024年第2期411-421,共11页
Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development rema... Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development. 展开更多
关键词 Calcium signaling Hydrogen peroxide Metabolic processed Gossypium hirsutum
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
11
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression
12
作者 Damián Sánchez-Ramírez Mónica G Mendoza-Rodríguez +7 位作者 Omar R Alemán Fernando A Candanedo-González Miriam Rodríguez-Sosa Juan JoséMontesinos-Montesinos Mauricio Salcedo Ismael Brito-Toledo Felipe Vaca-Paniagua Luis I Terrazas 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1705-1724,共20页
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ... Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role. 展开更多
关键词 Cancer-associated fibroblasts signal transducer and activator of transcription signaling Colorectal cancer IMMUNITY IMMUNOSUPPRESSION
下载PDF
Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
13
作者 WU Shou-Wu LIN Shao-Kun +11 位作者 NIAN Zhong-Zhu WANG Xin-Wen LIN Wei-Nian ZHUANG Li-Ming WU Zhi-Sheng HUANG Zhi-Wei WANG A-Min GAO Ni-Li CHEN Jia-Wen YUAN Wen-Ting LU Kai-Xian LIAO Jun 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第9期2182-2193,共12页
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect... Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC. 展开更多
关键词 mucin 1 nasopharyngeal carcinoma NF-κB signaling pathway PROLIFERATION APOPTOSIS
下载PDF
An artificial systems,computational experiments and parallel execution-based surface electromyogram-driven anti-disturbance zeroing neurodynamic strategy for upper limb human-robot interaction control
14
作者 Yongbai Liu Keping Liu +3 位作者 Gang Wang Jiliang Zhang Yao Chou Zhongbo Sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期511-525,共15页
In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be amel... In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ameliorated.Specially,the efficacy and robustness of the HRI control algorithm in the presence of unknown external disturbances deserve to be addressed.To deal with these urgent issues,in this study,artificial systems,computational experiments and a parallel execution intelligent control framework are constructed for the HRI control.The upper limb-robotic exoskeleton system is re-modelled as an artificial system.Depending on surface electromyogram-based subject's active motion intention in the practical system,a non-convex function activated anti-disturbance zeroing neurodynamic(NC-ADZND)controller is devised in the artificial system for parallel interaction and HRI control with the practical system.Furthermore,the linear activation function-based zeroing neurodynamic(LAF-ZND)controller and proportionalderivative(posterior deltoid(PD))controller are presented and compared.Theoretical results substantiate the global convergence and robustness of the proposed controller in the presence of different external disturbances.In addition,the simulation results verify that the NC-ADZND controller is better than the LAF-ZND and the PD controllers in respect of convergence order and anti-disturbance characteristics. 展开更多
关键词 neural network pattern recognition ROBOTICS signal processing
下载PDF
Diet restriction and exercise alleviate cognitive reduction of high fat diet (HFD)-induced obese mice by rescuing inflammation-mediated compromised insulin signaling pathway through activating AMPK/SIRT1 signal pathway and suppressing TLR4 signal pathway
15
作者 Hu Zhang Ye Zhang +7 位作者 Jiling Liang Jiahang Li Miao He Xin Liu Jielun Huang Minghui Wang Jingjing Fan Ning Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3171-3180,共10页
Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial f... Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial for improving cognitive capacity.However,further exploration is needed to understand the specific mechanisms of high fat diet(HFD)-induced cognitive decline in obesity.In the present study,4-month-old mice were subjected to HFD feeding for 18 weeks,followed by aerobic exercise and high-intensity intermittent exercise,regular diet feeding,and intermittent fasting for 8 weeks,and then used to evaluate cognitive capacity,inflammation,compromised insulin signaling pathway,and apoptosis in hippocampal tissue,as well as AMPK/SIRT1 and TLR4 signal pathways.Obese mice revealed impaired cognitive capacity as compared with mice fed with regular diets.In contrast,aerobic exercise,high-intensity intermittent exercise,regular diet,and intermittent fasting could inhibit apoptosis caused by inflammation-mediated compromised insulin signaling pathway in hippocampal tissues through activating the AMPK/SIRT1 signal pathway and suppressing the TLR4 signal pathway,thereby rescuing the cognitive impairment of obese mice.Therefore,diet restriction and exercise interventions may play a positive role in reverting obesity-induced cognitive impairment. 展开更多
关键词 Cognitive capacity Exercise intervention Diet restriction INFLAMMATION Insulin signaling pathway OBESITY
下载PDF
Calmodulins and calmodulin-like proteins-mediated plant organellar calcium signaling networks under abiotic stress
16
作者 Shuang Liu Liyan Zhao +4 位作者 Maozi Cheng Jinfeng Sun Xiaomeng Ji Aman Ullah Guosheng Xie 《The Crop Journal》 SCIE CSCD 2024年第5期1321-1332,共12页
Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting... Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles. 展开更多
关键词 Abiotic stress CALMODULIN Calmodulin-like protein Organellar calcium signaling pathway
下载PDF
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
17
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 Xiangxing Meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen Liu Qun Huang Xu Yang Jing Li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell Oxidative damage Nrf2 signalling pathway
下载PDF
Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy
18
作者 Feng Chen Xi Dong +11 位作者 Zhenhuan Wang Tongrui Wu Liangpeng Wei Yuanyuan Li Kai Zhang Zengguang Ma Chao Tian Jing Li Jingyu Zhao Wei Zhang Aili Liu Hui Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期425-433,共9页
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and... Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy. 展开更多
关键词 CA^(2+) calcium signals chemogenetic methods HIPPOCAMPUS primary motor cortex pyramidal neurons temporal lobe epilepsy
下载PDF
Adversarial attacks and defenses for digital communication signals identification
19
作者 Qiao Tian Sicheng Zhang +1 位作者 Shiwen Mao Yun Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第3期756-764,共9页
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ... As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research. 展开更多
关键词 Digital communication signals identification AI model Adversarial attacks Adversarial defenses Adversarial indicators
下载PDF
Identification of Early Warning Signals of Infectious Diseases in Hospitals by Integrating Clinical Treatment and Disease Prevention
20
作者 Lei ZHANG Min-ye LI +2 位作者 Chen ZHI Min ZHU Hui MA 《Current Medical Science》 SCIE CAS 2024年第2期273-280,共8页
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur... The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control. 展开更多
关键词 infectious disease disease prevention and control medical data warning signals
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部