Hong Kong is often affected by tropical cyclones.The Hong Kong observatory issues warning signals based on the impact of tropical cyclones on the region.The joint frequency analysis of tropical cyclones in Hong Kong c...Hong Kong is often affected by tropical cyclones.The Hong Kong observatory issues warning signals based on the impact of tropical cyclones on the region.The joint frequency analysis of tropical cyclones in Hong Kong can provide a scientific basis for disaster reduction and prevention and post-disaster reconstruction of tropical cyclones.First,the maximum hourly mean wind speed(W),warning signal duration(D),maximum sea level(L),and total rainfall(R)of each tropical cyclone that affected Hong Kong from 1985 to 2019 are selected and fitted using the Gumbel,Weibull,Pearson type 3,and lognormal distributions.Then,bivariate copula functions,such as the Clayton,Frank,Gumbel-Hougaard,and Gaussian copulas,are applied to construct the joint probability models of W,D,L,and R,respectively.The joint return periods of W and D and those of L and R are defined as the meteorological and hydrological intensities of tropical cyclones,respectively.The results show that the joint return periods are good indicators of the comprehensive effect of the meteorological and hydrological intensities of tropical cyclones.No necessary correlation between meteorological and hydrological intensities of tropical cyclones exists.The meteorological and hydrological intensities of tropical cyclones show an upward trend in recent years.展开更多
In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becomi...In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becoming more common in safety signals for railroad, highway, automotive, and many other applications. In addition to having a longer life and greater durability than incandescent bulbs, LEDs are much more energy efficient than their incandescent counterparts. Since the heat from the junction must be dissipated into the ambient somehow, changing the ambient temperature affects the junction temperature and hence the emitted light. When the LEDs are used in the railway or traffic signals, the optical proprieties of these have to maintain more rigorous specifications. Therefore the development of signals using LED as light source, able to respect intensity specifications, is not simple. In this paper, we describe problems of the temperature dependent changes of LED intensity and color shift. Besides we will introduce an innovative technique, that we have developed, to allow the use of the LEDs in applications with rigorous specifications.展开更多
The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signa...The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.展开更多
The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a...The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a method for this purpose, by using a new fractal dimension algorithm and by adjusting the amplitude of the EEG signal in order to obtain maximal separation of high and low fractal dimensions. The emotion was induced by embedding a scary image at 20 seconds in landscape videos of 60 seconds length. The new method did not only detect the onset of the emotion correctly, but also revealed its duration and intensity. The intensity is based on the magnitude and impulse of the fractal dimension signal. It is also shown that Higuchi’s method does not always detect emotion spikes correctly;on the contrary, the region of the expected emotional response can be represented by fractal dimensions smaller than the rest of the signal, whereas the new method directly reveals distinct spikes. The duration of these spikes was 10 - 11 seconds. The magnitude of these spikes varied across the EEG channels. The build-up and cool-down of the emotions can occur with steep and flat gradients.展开更多
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlatio...By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.展开更多
Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effectiv...Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.展开更多
Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) has become an established part of neuroimaging and is used to diagnose and characterize several neurologic disorders. Intracerebral Haemorrhage (ICH) is a severe ...Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) has become an established part of neuroimaging and is used to diagnose and characterize several neurologic disorders. Intracerebral Haemorrhage (ICH) is a severe medical condition, which may develop quickly into a life-threatening situation, and thereby requires prompt medical attention. Early and reliable identification of the age of haemorrhage is essential when choosing the correct treatment, and estimating patient’s diagnosis and outcome. Diffusion Weighted (DW) images presents a variation in the image signal intensity characteristics relative to the different stages of ICH. In the present paper, an effort is made to document the variation in the image signal intensity characteristics of ICH at evolving stages, for 30 subjects, using High Frequency Power (HFP) parameter. Results showed that the difference in the HFP values on DW images for the subjects with ICH com- pared to their contralateral normal hemisphere, were highly significant (p 14 days). There was a negative correlation (r = ?0.81) observed between the RHFP values and the evolving stages of ICH. The results indicate that the quantitative changes in the RHFP values can be assessed to derive information about the stage of ICH, and their adoption in clinical diagnosis and treatment could be helpful and informative.展开更多
For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain ...For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain size distributions were estimated using the sieve technique and microscopic observations. Stacks of sieves with openings that decrease consecutively in the order of 4.75 mm, 1.18 mm, 600 μm, 300 μm, 150 μm and 75 μm were chosen for this study. Grain size distributions analysis revealed that samples further from the slip plane have larger d50 (average gain size) (0.45 mm at a distance of 30 - 50 mm from the slip plane) while those close to the slip plane have smaller d50 values (0.19 mm at a distance of 0 - 10 mm from the slip plane). This is due to intensive crushing that is always associated with large displacement during fault activities. However, this pattern was not respected in all shear zones in that, larger d50 values were instead observed in samples close to the slip plane due to admixture of fault rocks from different fault activities. Results from ESR analysis revealed that the relatively finer samples close to the slip plane have low ESR signals intensity while those further away (coarser) have relatively higher signal intensity. This tendency however, is not consistence in some of the shear zones due to a complex network of anatomizing faults. The variation in grain size distribution within some of the shear zones implies that, a series of fault events have taken place in the past thus underscoring the need for further investigation of the possibility of reoccurrence of faults.展开更多
Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension a...Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension and cerebral small vessel disease remains unclear.Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease.Chronic hypertension and lifestyle factors are associated with risks for stro ke and dementia,and cerebral small vessel disease can cause dementia and stroke.Hypertension is the main driver of cerebral small vessel disease,which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction,leukoaraiosis,white matter lesions,and intracerebral hemorrhage,ultimately res ulting in cognitive decline and demonstrating that the brain is the to rget organ of hypertension.This review updates our understanding of the pathogenesis of hypertensioninduced cerebral small vessel disease and the res ulting changes in brain structure and function and declines in cognitive ability.We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.展开更多
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-...In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.展开更多
The ESR signals of bilirubin-IXα were studied including the samples treated with free radical generating and inhibiting systems,i.e.X-X0., Fe/EDTA,SOD,mannitol/ascorbate,DTPA,KCN et al.These stable signals all compri...The ESR signals of bilirubin-IXα were studied including the samples treated with free radical generating and inhibiting systems,i.e.X-X0., Fe/EDTA,SOD,mannitol/ascorbate,DTPA,KCN et al.These stable signals all comprise those originated from a semiquinone radical(g=2.0012)and superoxide radical(g_=2.041,g_=2.0040).The latter is shown to be bound with metal ions especially iron,chelated by bilirubin.The iron probably comes from bilirubin precursor——hemootobin.Active oxygen free radical scavengers may destroy these radicals.Kinetic curves of regeneration of the bilirubin radicals have been determined.Bilirubin is discussed as'active oxygen trap'in mammatians.展开更多
Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between ...Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, and calculates the steady-state mean normalized intensity fluctuation and intensity correlation time. It analyses the influences of the modulation signal, the net gain coefficient, the noise and its correlation form on the statistical fluctuation of the laser system respectively. It is found that the coloured pump noise modulated by the signal has a great suppressing action on the statistical fluctuation of the laser system; the pump noise self-correlation time and the specific frequency of modulation signal have the result that the statistical fluctuation tends to zero. Furthermore, the 'colour' correlation of pump noise has much influences on the statistical fluctuation of the laser system. Increasing the intensity of pump noise will augment the statistical fluctuation of the laser system, but the intensity of quantum noise and the coefficient of cross-correlation between its real and imaginary parts have less influence on the statistical fluctuation of the laser system. Therefore, from the conclusions of this paper the statistical property can be known and a theoretical basis for steady operation and output of the laser system can be provided.展开更多
The drop in the MRI signal intensity, analysed without any normalisation, was found related to the intervertebral disc degeneration, but its association with low back pain remains controversial. The authors developed ...The drop in the MRI signal intensity, analysed without any normalisation, was found related to the intervertebral disc degeneration, but its association with low back pain remains controversial. The authors developed the analysis of MR signal intensity distribution (AMRSID) method that analyzes the 3D distribution of the normalized T2-weighted MR signal intensity within the intervertebral disc using descriptive statistics of histograms and weighted centers. In this study, we hypothesized that the distribution of the normalized MRI signal intensity within T2- weighted images of the intervertebral disc is a bio-marker of low back pain (LBP) independently of age and disc degenerescence. The aims were to: 1) characterize intervertebral disc degeneration in vertebral fracture from MR T1-weighted and T2-weighted images;2) evaluate the sensitivity of the normalized MRI signal distribution to the presence of LBP, discs height loss and aging. We prospectively studied 22 patients who underwent an MRI acquisition within 48h after an accidental lumbar vertebral fracture. The presence of prefracture low back pain, spinal stenosis, annular disruption, intervertebral disc height loss was noted from each patient’s medical record. The presence of Modic changes, High-Intensity Zones (HIZs) and vertebral endplate perforations was recorded from MRI. The descriptive statistics of the normalized T2-weighted signal were compared using one-way ANOVAs and a principal component analysis was proposed. MRI, associated to normalisation of the signal intensity and principal component analysis, offers a remarkable potential for in-vivo imaging and analysis of vertebral fractures and adjacent tissues for the patient’s follow-up. The mean normalized MRI signal intensity of the adjacent intervertebral disc to the vertebral fracture was found to be a bio-marker of pain, independently of age and disc degeneration. However, the parameters describing the distribution of the normalized signal intensity were found to be not sensitive to the presence of low back pain, discs height loss and aging. Further studies need to be performed to detect small abnormalities that may explain the presence of LBP.展开更多
On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation be...On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The by reducing the intensity of pump noise and quantum noise. statistical fluctuation of the laser system can be restrained Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coe~cient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.展开更多
基金The study was supported by the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226)the National Natural Science Foundation of China(No.52171284).
文摘Hong Kong is often affected by tropical cyclones.The Hong Kong observatory issues warning signals based on the impact of tropical cyclones on the region.The joint frequency analysis of tropical cyclones in Hong Kong can provide a scientific basis for disaster reduction and prevention and post-disaster reconstruction of tropical cyclones.First,the maximum hourly mean wind speed(W),warning signal duration(D),maximum sea level(L),and total rainfall(R)of each tropical cyclone that affected Hong Kong from 1985 to 2019 are selected and fitted using the Gumbel,Weibull,Pearson type 3,and lognormal distributions.Then,bivariate copula functions,such as the Clayton,Frank,Gumbel-Hougaard,and Gaussian copulas,are applied to construct the joint probability models of W,D,L,and R,respectively.The joint return periods of W and D and those of L and R are defined as the meteorological and hydrological intensities of tropical cyclones,respectively.The results show that the joint return periods are good indicators of the comprehensive effect of the meteorological and hydrological intensities of tropical cyclones.No necessary correlation between meteorological and hydrological intensities of tropical cyclones exists.The meteorological and hydrological intensities of tropical cyclones show an upward trend in recent years.
文摘In recent years, light emitting diodes (LEDs) have entered the lighting market, offering consumers performance and features exceeding those of traditional lighting technologies. LEDs (light-emitting diodes) are becoming more common in safety signals for railroad, highway, automotive, and many other applications. In addition to having a longer life and greater durability than incandescent bulbs, LEDs are much more energy efficient than their incandescent counterparts. Since the heat from the junction must be dissipated into the ambient somehow, changing the ambient temperature affects the junction temperature and hence the emitted light. When the LEDs are used in the railway or traffic signals, the optical proprieties of these have to maintain more rigorous specifications. Therefore the development of signals using LED as light source, able to respect intensity specifications, is not simple. In this paper, we describe problems of the temperature dependent changes of LED intensity and color shift. Besides we will introduce an innovative technique, that we have developed, to allow the use of the LEDs in applications with rigorous specifications.
文摘The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.
文摘The assessment of emotions with fractal dimensions of EEG signals has been attempted before, but the quantification of the intensity and duration of sudden and short emotions remains a challenge. This paper suggests a method for this purpose, by using a new fractal dimension algorithm and by adjusting the amplitude of the EEG signal in order to obtain maximal separation of high and low fractal dimensions. The emotion was induced by embedding a scary image at 20 seconds in landscape videos of 60 seconds length. The new method did not only detect the onset of the emotion correctly, but also revealed its duration and intensity. The intensity is based on the magnitude and impulse of the fractal dimension signal. It is also shown that Higuchi’s method does not always detect emotion spikes correctly;on the contrary, the region of the expected emotional response can be represented by fractal dimensions smaller than the rest of the signal, whereas the new method directly reveals distinct spikes. The duration of these spikes was 10 - 11 seconds. The magnitude of these spikes varied across the EEG channels. The build-up and cool-down of the emotions can occur with steep and flat gradients.
文摘By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.
基金Project supported by the National Natural Science Foundation of China(Grant No.81272495)the Natural Science Foundation of Tianjin,China(Grant No.16JC2DJC32200)
文摘Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.
文摘Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) has become an established part of neuroimaging and is used to diagnose and characterize several neurologic disorders. Intracerebral Haemorrhage (ICH) is a severe medical condition, which may develop quickly into a life-threatening situation, and thereby requires prompt medical attention. Early and reliable identification of the age of haemorrhage is essential when choosing the correct treatment, and estimating patient’s diagnosis and outcome. Diffusion Weighted (DW) images presents a variation in the image signal intensity characteristics relative to the different stages of ICH. In the present paper, an effort is made to document the variation in the image signal intensity characteristics of ICH at evolving stages, for 30 subjects, using High Frequency Power (HFP) parameter. Results showed that the difference in the HFP values on DW images for the subjects with ICH com- pared to their contralateral normal hemisphere, were highly significant (p 14 days). There was a negative correlation (r = ?0.81) observed between the RHFP values and the evolving stages of ICH. The results indicate that the quantitative changes in the RHFP values can be assessed to derive information about the stage of ICH, and their adoption in clinical diagnosis and treatment could be helpful and informative.
文摘For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain size distributions were estimated using the sieve technique and microscopic observations. Stacks of sieves with openings that decrease consecutively in the order of 4.75 mm, 1.18 mm, 600 μm, 300 μm, 150 μm and 75 μm were chosen for this study. Grain size distributions analysis revealed that samples further from the slip plane have larger d50 (average gain size) (0.45 mm at a distance of 30 - 50 mm from the slip plane) while those close to the slip plane have smaller d50 values (0.19 mm at a distance of 0 - 10 mm from the slip plane). This is due to intensive crushing that is always associated with large displacement during fault activities. However, this pattern was not respected in all shear zones in that, larger d50 values were instead observed in samples close to the slip plane due to admixture of fault rocks from different fault activities. Results from ESR analysis revealed that the relatively finer samples close to the slip plane have low ESR signals intensity while those further away (coarser) have relatively higher signal intensity. This tendency however, is not consistence in some of the shear zones due to a complex network of anatomizing faults. The variation in grain size distribution within some of the shear zones implies that, a series of fault events have taken place in the past thus underscoring the need for further investigation of the possibility of reoccurrence of faults.
基金supported by the National Natural Science Foundation of China,Nos.82274611 (to LZ),82104419 (to DM)Capital Science and Technology Leading Talent Training Project,No.Z1 91100006119017 (to LZ)+3 种基金Beijing Hospitals Authority Ascent Plan,No.DFL20190803 (to LZ)Cultivation Fund of Hospital Management Center in Beijing,No.PZ2022006 (to DM)R&D Program of Beijing Municipal Education Commission,No.KM202210025017 (to DM)Beijing Gold-Bridge Project,No.ZZ20145 (to DM)。
文摘Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension and cerebral small vessel disease remains unclear.Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease.Chronic hypertension and lifestyle factors are associated with risks for stro ke and dementia,and cerebral small vessel disease can cause dementia and stroke.Hypertension is the main driver of cerebral small vessel disease,which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction,leukoaraiosis,white matter lesions,and intracerebral hemorrhage,ultimately res ulting in cognitive decline and demonstrating that the brain is the to rget organ of hypertension.This review updates our understanding of the pathogenesis of hypertensioninduced cerebral small vessel disease and the res ulting changes in brain structure and function and declines in cognitive ability.We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774088 and 11474090)。
文摘In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.
文摘The ESR signals of bilirubin-IXα were studied including the samples treated with free radical generating and inhibiting systems,i.e.X-X0., Fe/EDTA,SOD,mannitol/ascorbate,DTPA,KCN et al.These stable signals all comprise those originated from a semiquinone radical(g=2.0012)and superoxide radical(g_=2.041,g_=2.0040).The latter is shown to be bound with metal ions especially iron,chelated by bilirubin.The iron probably comes from bilirubin precursor——hemootobin.Active oxygen free radical scavengers may destroy these radicals.Kinetic curves of regeneration of the bilirubin radicals have been determined.Bilirubin is discussed as'active oxygen trap'in mammatians.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025) and Emphases Item of Education 0ffice of Hubei Province China (Grant Nos D200612001 and 2004X052).
文摘Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, and calculates the steady-state mean normalized intensity fluctuation and intensity correlation time. It analyses the influences of the modulation signal, the net gain coefficient, the noise and its correlation form on the statistical fluctuation of the laser system respectively. It is found that the coloured pump noise modulated by the signal has a great suppressing action on the statistical fluctuation of the laser system; the pump noise self-correlation time and the specific frequency of modulation signal have the result that the statistical fluctuation tends to zero. Furthermore, the 'colour' correlation of pump noise has much influences on the statistical fluctuation of the laser system. Increasing the intensity of pump noise will augment the statistical fluctuation of the laser system, but the intensity of quantum noise and the coefficient of cross-correlation between its real and imaginary parts have less influence on the statistical fluctuation of the laser system. Therefore, from the conclusions of this paper the statistical property can be known and a theoretical basis for steady operation and output of the laser system can be provided.
文摘The drop in the MRI signal intensity, analysed without any normalisation, was found related to the intervertebral disc degeneration, but its association with low back pain remains controversial. The authors developed the analysis of MR signal intensity distribution (AMRSID) method that analyzes the 3D distribution of the normalized T2-weighted MR signal intensity within the intervertebral disc using descriptive statistics of histograms and weighted centers. In this study, we hypothesized that the distribution of the normalized MRI signal intensity within T2- weighted images of the intervertebral disc is a bio-marker of low back pain (LBP) independently of age and disc degenerescence. The aims were to: 1) characterize intervertebral disc degeneration in vertebral fracture from MR T1-weighted and T2-weighted images;2) evaluate the sensitivity of the normalized MRI signal distribution to the presence of LBP, discs height loss and aging. We prospectively studied 22 patients who underwent an MRI acquisition within 48h after an accidental lumbar vertebral fracture. The presence of prefracture low back pain, spinal stenosis, annular disruption, intervertebral disc height loss was noted from each patient’s medical record. The presence of Modic changes, High-Intensity Zones (HIZs) and vertebral endplate perforations was recorded from MRI. The descriptive statistics of the normalized T2-weighted signal were compared using one-way ANOVAs and a principal component analysis was proposed. MRI, associated to normalisation of the signal intensity and principal component analysis, offers a remarkable potential for in-vivo imaging and analysis of vertebral fractures and adjacent tissues for the patient’s follow-up. The mean normalized MRI signal intensity of the adjacent intervertebral disc to the vertebral fracture was found to be a bio-marker of pain, independently of age and disc degeneration. However, the parameters describing the distribution of the normalized signal intensity were found to be not sensitive to the presence of low back pain, discs height loss and aging. Further studies need to be performed to detect small abnormalities that may explain the presence of LBP.
基金The project supported by National Natural Science Foundation of China under Grant No. 10275025 and the Emphases Item of Education Department of Hubei Province under Grant No. 2004X052
文摘On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The by reducing the intensity of pump noise and quantum noise. statistical fluctuation of the laser system can be restrained Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coe~cient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.