Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be expl...Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.展开更多
BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate de...BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.展开更多
Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(...Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.展开更多
The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, th...The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.展开更多
BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colo...BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer(CRC). Knockdown of VASH1 enhanced transforming growth factor-β1(TGF-β1)/Smad3 pathway activity and type Ⅰ/Ⅲ collagen production. Our previous findings suggest that ELL-associated factor 2(EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3(STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was upregulated in advanced CRC tissue compared to normal colorectal tissue. KaplanMeier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cellderived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.展开更多
Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracell...Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular- signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)- N,N,N',N'-tetraacetic acid (EGTA). In some experiments, 5-bromo-2′-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation.展开更多
AIM: To explore the mechanism for interactions of leptin with ghrelin and orexin in the arcuate nucleus (ARC) activating neuropeptide Y (NPY) neurons during physiological regulation of feeding, METHODS: Single n...AIM: To explore the mechanism for interactions of leptin with ghrelin and orexin in the arcuate nucleus (ARC) activating neuropeptide Y (NPY) neurons during physiological regulation of feeding, METHODS: Single neurons from ARC of adult rats with matured feeding function were isolated. [Ca2+]i was measured to monitore their activities. The time course of leptin effects on ghrelin-induced versus orexin-induced [Ca2+]i increases in NPY neurons was studied. RESULTS: Administration of ghrelin or orexin-A at 101~ mol/L increased cytosolic Ca2~ concentration ([Ca2+]~) in NPY neurons isolated from the ARC of adult rats. Upon administration of leptin at 10^-14-10^-12 mol/L, ghrelin-induced [Ca2+]i increases were initially (〈 10 min) inhibited but later restored, exhibiting a transient pattern of inhibition. In contrast, orexin-induced [Ca2+]i increases were inhibited by leptin in a long- lasting manner. Furthermore, a prior administration of leptin inhibited orexin action but not ghrelin action to increase ICa 2+li, CONCLUSION: Leptin counteracted ghrelin effects transiently and orexin effects long-lastingly in NPY neurons. The transient property with which leptin counteracts ghrelin action in NPY neurons may allow the fasting-associated increase in ghrelin levels to activate NPY neurons in the presence of physiological leptin and to stimulate feeding.展开更多
The receptor-like kinase FLAGELLIN-SENSITIVE 2(FLS2)functions as a bacterialflagellin receptor local-ized on the cell membrane of plants.In Arabidopsis,the co-receptor BRI1-ASSOCIATED RECEPTOR KI-NASE 1(BAK1)cooperate...The receptor-like kinase FLAGELLIN-SENSITIVE 2(FLS2)functions as a bacterialflagellin receptor local-ized on the cell membrane of plants.In Arabidopsis,the co-receptor BRI1-ASSOCIATED RECEPTOR KI-NASE 1(BAK1)cooperates with FLS2 to detect theflagellin epitopeflg22,resulting in formation of a signaling complex that triggers plant defense responses.However,the co-receptor responsible for recog-nizing and signaling theflg22 epitope in rice remains to be determined,and the precise structural mecha-nism underlying FLS2-mediated signal activation and transduction has not been claried.This study pre-sents the structural characterization of a kinase-dead mutant of the intracellular kinase domain of OsFLS2(OsFLS2-KDD1013A)in complex with ATP or ADP,resolved at resolutions of 1.98 A˚and 2.09 A˚,respectively.Structural analysis revealed that OsFLS2 can adopt an active conformation in the absence of phosphorylation,although it exhibits only weak basal catalytic activity for autophosphorylation.Subse-quent investigations demonstrated that OsSERK2 effectively phosphorylates OsFLS2,which reciprocally phosphorylates OsSERK2,leading to complete activation of OsSERK2 and rapid phosphorylation of the downstream substrate receptor-like cytoplasmic kinases OsRLCK176 and OsRLCK185.Through mass spectrometry experiments,we successfully identied critical autophosphorylation sites on OsSERK2,as well as sites transphosphorylated by OsFLS2.Furthermore,we demonstrated the interaction between OsSERK2 and OsFLS2,which is enhanced in the presence offlg22.Genetic evidence suggests that OsRLCK176 and OsRLCK185 may function downstream of the OsFLS2-mediated signaling pathway.Our study reveals the molecular mechanism by which OsFLS2 mediates signal transduction pathways in rice and provides a valuable example for understanding RLK-mediated signaling pathways in plants.展开更多
目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响...目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响。方法选取36只雌性SD大鼠随机分成空白组、模型组、阳性对照组和通痹颗粒低、中、高剂量组,每组6只。空白组不予处理,其余组用牛Ⅱ型胶原建立CIA模型。造模完成后,空白组、模型组予生理盐水灌胃,其余各组分别以巴瑞替尼片和低、中、高剂量通痹颗粒灌胃。每天1次,连续4周。HE染色行滑膜组织病理学观察;酶联免疫吸附法测定血清Hepc、白细胞介素6(interleukin 6,IL-6)水平;逆转录-聚合酶链反应法测定滑膜中JAK2、STAT3、细胞信号因子传导抑制体(suppressor of cytokine signaling,SOCS)1、SOCS3的mRNA相对表达量;Western blot法检测滑膜中JAK2、p-JAK2、STAT3、p-STAT3、SOCS1、SOCS3的蛋白表达量。结果模型组见滑膜上皮结构缺损,滑膜重度增生,排列紊乱,并有大量炎症细胞浸润和多个血管翳形成;各给药组滑膜炎症均有所减轻,阳性对照组优于通痹颗粒高剂量组,通痹颗粒中、高剂量组优于低剂量组。与模型组相比,各给药组关节炎指数评分、血清Hepc和IL-6水平均显著降低(P<0.01);与阳性对照组相比,通痹颗粒中、低剂量组关节炎指数评分、血清Hepc和IL-6水平均升高(P<0.05)。与模型组比较,阳性对照组和通痹颗粒低、中、高剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均降低(P<0.05),而通路抑制因子SOCS1、SOCS3 mRNA和蛋白的表达均升高(P<0.05);与阳性对照组比较,通痹颗粒各剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均升高(P<0.05),而SOCS1、SOCS3 mRNA和蛋白的表达均降低(P<0.05)。结论通痹颗粒能够改善CIA大鼠滑膜炎症,其机制可能与抑制JAK2/STAT3信号通路而减少Hepc的表达有关。展开更多
基金supported by grants from Key R&D Project of Science and Technology Foundation of Sichuan Province(2022YFS0290).
文摘Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.
基金Supported by the National Natural Science Foundation of China,No.81070319the Beijing Natural Science Foundation of China,No.7102013the Beijing Municipal Education Commission Research Program,China,No.KM201610025004
文摘BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.
基金The Sixth Batch of Special Support Plans in Anhui Province(No.dlPtzjh20200050)Key Natural Science Research Project of Higher Education Institutions in Anhui Province(No.KJ2020A0426)。
文摘Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis.
文摘The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.
基金the Natural Science Foundation of Liaoning Province,No.2023-MS-149.
文摘BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer(CRC). Knockdown of VASH1 enhanced transforming growth factor-β1(TGF-β1)/Smad3 pathway activity and type Ⅰ/Ⅲ collagen production. Our previous findings suggest that ELL-associated factor 2(EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3(STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was upregulated in advanced CRC tissue compared to normal colorectal tissue. KaplanMeier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cellderived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.
基金supported by the Research School in Pharmaceutical Science in Lund,The Royal Physiographic Society in LundThe Swedish Research Council(Medicine)+1 种基金the Craaford’s and Thure Nilsson’s Funds for Medical ResearchFunds for diabetic research,Lund University and Region Skane
文摘Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular- signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)- N,N,N',N'-tetraacetic acid (EGTA). In some experiments, 5-bromo-2′-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation.
基金Supported by Grant-in-Aid for Scientific Research (B) (18390065, 20390061) that on Priority Areas (15081101) from Japan Society for the Promotion of Science (JSPS)+2 种基金a grant from the 21st century Center of Excellence (COE) program, an Insulin Research Award from Novo Nordisk Pharma Ltd.a grant from Japan Diabetes Foundationa grant from the Smoking Research Foundation to TY
文摘AIM: To explore the mechanism for interactions of leptin with ghrelin and orexin in the arcuate nucleus (ARC) activating neuropeptide Y (NPY) neurons during physiological regulation of feeding, METHODS: Single neurons from ARC of adult rats with matured feeding function were isolated. [Ca2+]i was measured to monitore their activities. The time course of leptin effects on ghrelin-induced versus orexin-induced [Ca2+]i increases in NPY neurons was studied. RESULTS: Administration of ghrelin or orexin-A at 101~ mol/L increased cytosolic Ca2~ concentration ([Ca2+]~) in NPY neurons isolated from the ARC of adult rats. Upon administration of leptin at 10^-14-10^-12 mol/L, ghrelin-induced [Ca2+]i increases were initially (〈 10 min) inhibited but later restored, exhibiting a transient pattern of inhibition. In contrast, orexin-induced [Ca2+]i increases were inhibited by leptin in a long- lasting manner. Furthermore, a prior administration of leptin inhibited orexin action but not ghrelin action to increase ICa 2+li, CONCLUSION: Leptin counteracted ghrelin effects transiently and orexin effects long-lastingly in NPY neurons. The transient property with which leptin counteracts ghrelin action in NPY neurons may allow the fasting-associated increase in ghrelin levels to activate NPY neurons in the presence of physiological leptin and to stimulate feeding.
基金supported by grants from the National Natural Science Foundation of China (32160064 and 32360085)the Guangxi Natural Science Foundation (2020GXNSFFA297007)+2 种基金the Ba-Gui Scholar Program of Guangxi (to Z.G.H.)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (sklcusa-a02)the Innovation Project of Guangxi Graduate Education (YCBZ2023037).
文摘The receptor-like kinase FLAGELLIN-SENSITIVE 2(FLS2)functions as a bacterialflagellin receptor local-ized on the cell membrane of plants.In Arabidopsis,the co-receptor BRI1-ASSOCIATED RECEPTOR KI-NASE 1(BAK1)cooperates with FLS2 to detect theflagellin epitopeflg22,resulting in formation of a signaling complex that triggers plant defense responses.However,the co-receptor responsible for recog-nizing and signaling theflg22 epitope in rice remains to be determined,and the precise structural mecha-nism underlying FLS2-mediated signal activation and transduction has not been claried.This study pre-sents the structural characterization of a kinase-dead mutant of the intracellular kinase domain of OsFLS2(OsFLS2-KDD1013A)in complex with ATP or ADP,resolved at resolutions of 1.98 A˚and 2.09 A˚,respectively.Structural analysis revealed that OsFLS2 can adopt an active conformation in the absence of phosphorylation,although it exhibits only weak basal catalytic activity for autophosphorylation.Subse-quent investigations demonstrated that OsSERK2 effectively phosphorylates OsFLS2,which reciprocally phosphorylates OsSERK2,leading to complete activation of OsSERK2 and rapid phosphorylation of the downstream substrate receptor-like cytoplasmic kinases OsRLCK176 and OsRLCK185.Through mass spectrometry experiments,we successfully identied critical autophosphorylation sites on OsSERK2,as well as sites transphosphorylated by OsFLS2.Furthermore,we demonstrated the interaction between OsSERK2 and OsFLS2,which is enhanced in the presence offlg22.Genetic evidence suggests that OsRLCK176 and OsRLCK185 may function downstream of the OsFLS2-mediated signaling pathway.Our study reveals the molecular mechanism by which OsFLS2 mediates signal transduction pathways in rice and provides a valuable example for understanding RLK-mediated signaling pathways in plants.