High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and t...High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and their mechanistic regulation by dietary agents and bioactive molecules at unprecedented dimensionality and resolution.Extra-ordinary breakthroughs in the field of nutrigenomics have leveraged our understanding altogether to a new level of maturity.Interdisciplinary researchers have extensively analyzed health promoting and pharmacologically significant properties of garlic(Allium sativum).Importantly,garlic and its biologically active chemicals targeted oncogenic signaling cascades.In this mini-review we have attempted to summarize how garlic and its bioactive constituents regulated signal transduction cascades in cell culture studies and tumor-bearing mice.展开更多
Subgroup 4(Sg4)members of the R2R3-MYB are generally known as negative regulators of the phenylpropanoid pathway in plants.Our previous research showed that a R2R3-MYB Sg4 member from Camellia sinensis(CsMYB4a)inhibit...Subgroup 4(Sg4)members of the R2R3-MYB are generally known as negative regulators of the phenylpropanoid pathway in plants.Our previous research showed that a R2R3-MYB Sg4 member from Camellia sinensis(CsMYB4a)inhibits expression of some genes in the phenylpropanoid pathway,but its physiological function in the tea plant remained unknown.Here,CsMYB4a was found to be highly expressed in anther and filaments,and participated in regulating filament growth.Transcriptome analysis and exogenous auxin treatment showed that the target of CsMYB4a might be the auxin signal pathway.Auxin/indole-3-acetic acid 4(AUX/IAA4),a repressor in auxin signal transduction,was detected from a yeast two-hybrid screen using CsMYB4a as bait.Gene silencing assays showed that both CsIAA4 and CsMYB4a regulate filament growth.Tobacco plants overexpressing CsIAA4 were insensitive to exogenous a-NAA,consistent with overexpression of CsMYB4a.Protein-protein interaction experiments revealed that CsMYB4a interacts with N-terminal of CsIAA4 to prevent CsIAA4 degradation.Knock out of the endogenous NtIAA4 gene,a CsIAA4 homolog,in tobacco alleviated filament growth inhibition and a-NAA insensitivity in plants overexpressing CsMYB4a.All results strongly suggest that CsMYB4a works synergistically with CsIAA4 and participates in regulation of the auxin pathway in stamen.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, ...Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi...Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.展开更多
Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including as...Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including asthma and chronic obstructive pulmonary disease(COPD).Asthma is the most frequent chronic inflammatory airway disease,characterized by breathlessness,wheezing,chest tightness,and cough,together with the presence of exaggerated expiratory airflow fluctuation that varies over time.COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms such as dyspnea,cough,expectoration,and/or exacerbations due to abnormalities of the airways and/or alveoli that cause persistent,often progressive,airflow obstruction.Understanding the molecular mechanisms and cellular processes based on the development of OLD on exposure to air pollutants will provide insights into the solution of pathogenesis,prevention,and treatment of these conditions.The molecular mechanisms and cellular process involved in signal transduction pathway plays a role in the binding of extracellular signaling molecules and ligands to receptors placed on the cell surface or on the inner side cell that trigger inflammation that occurs,especially when something important enters the cell to bring into a cascade response.This binding then alters the cell metabolism,shape,and gene expression in the airway.This review aimed to reveal the effect of air pollutants on the molecular mechanisms and cellular processes involved in the signal transduction pathways in OLD.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus...BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.展开更多
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat...In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.展开更多
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference...From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.展开更多
In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success...In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.展开更多
Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportu...Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportunities to enhance the performance of signal processing in such applications and even motivate new ones.However,the curse of dimensionality is always a challenge when processing such high-dimensional signals.In practical tasks,high-dimensional signals need to be acquired,processed,and analyzed with high accuracy,robustness,and computational efficiency.This special section aims to address these challenges,where articles attempt to develop new theories and methods that are best suited to the high dimensional nature of the signals involved,and explore modern and emerging applications in this area.展开更多
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ...Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.展开更多
The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed ma...The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
基金funded by a grant(UICR202107)from BNUHKBU United International College.
文摘High-throughput technologies in combination with modern exciting advancements in mass spectrometry-based proteomics and data analysis pipelines have empowered comprehensive characterization of disease phenotypes and their mechanistic regulation by dietary agents and bioactive molecules at unprecedented dimensionality and resolution.Extra-ordinary breakthroughs in the field of nutrigenomics have leveraged our understanding altogether to a new level of maturity.Interdisciplinary researchers have extensively analyzed health promoting and pharmacologically significant properties of garlic(Allium sativum).Importantly,garlic and its biologically active chemicals targeted oncogenic signaling cascades.In this mini-review we have attempted to summarize how garlic and its bioactive constituents regulated signal transduction cascades in cell culture studies and tumor-bearing mice.
基金This work was financially supported by the joint funds of National Natural Science Foundation of China(U21A20232)the Natural Science Foundation of China(32072621,32002088,31870676)Collegiate Collaborative Innovation Foundation of Anhui Province(GXXT-2020-081).
文摘Subgroup 4(Sg4)members of the R2R3-MYB are generally known as negative regulators of the phenylpropanoid pathway in plants.Our previous research showed that a R2R3-MYB Sg4 member from Camellia sinensis(CsMYB4a)inhibits expression of some genes in the phenylpropanoid pathway,but its physiological function in the tea plant remained unknown.Here,CsMYB4a was found to be highly expressed in anther and filaments,and participated in regulating filament growth.Transcriptome analysis and exogenous auxin treatment showed that the target of CsMYB4a might be the auxin signal pathway.Auxin/indole-3-acetic acid 4(AUX/IAA4),a repressor in auxin signal transduction,was detected from a yeast two-hybrid screen using CsMYB4a as bait.Gene silencing assays showed that both CsIAA4 and CsMYB4a regulate filament growth.Tobacco plants overexpressing CsIAA4 were insensitive to exogenous a-NAA,consistent with overexpression of CsMYB4a.Protein-protein interaction experiments revealed that CsMYB4a interacts with N-terminal of CsIAA4 to prevent CsIAA4 degradation.Knock out of the endogenous NtIAA4 gene,a CsIAA4 homolog,in tobacco alleviated filament growth inhibition and a-NAA insensitivity in plants overexpressing CsMYB4a.All results strongly suggest that CsMYB4a works synergistically with CsIAA4 and participates in regulation of the auxin pathway in stamen.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
文摘Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
基金supported by Jiangsu Provincial Medical Key Discipline,No.ZDXK202217(to CFL)Jiangsu Planned Projects for Postdoctoral Research Funds,No.1601056C(to SL).
文摘Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.
基金the funding provided by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2020R1A2C1006506).
文摘Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including asthma and chronic obstructive pulmonary disease(COPD).Asthma is the most frequent chronic inflammatory airway disease,characterized by breathlessness,wheezing,chest tightness,and cough,together with the presence of exaggerated expiratory airflow fluctuation that varies over time.COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms such as dyspnea,cough,expectoration,and/or exacerbations due to abnormalities of the airways and/or alveoli that cause persistent,often progressive,airflow obstruction.Understanding the molecular mechanisms and cellular processes based on the development of OLD on exposure to air pollutants will provide insights into the solution of pathogenesis,prevention,and treatment of these conditions.The molecular mechanisms and cellular process involved in signal transduction pathway plays a role in the binding of extracellular signaling molecules and ligands to receptors placed on the cell surface or on the inner side cell that trigger inflammation that occurs,especially when something important enters the cell to bring into a cascade response.This binding then alters the cell metabolism,shape,and gene expression in the airway.This review aimed to reveal the effect of air pollutants on the molecular mechanisms and cellular processes involved in the signal transduction pathways in OLD.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金Supported by Basic and Applied Basic Research Found of Guangdong Province,No.2022A1515011307。
文摘BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.
基金supported by the National Natural Science Foundation of China (62261047,62066040)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075)+3 种基金the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637)PhD Research Start-up Foundation of Tongren University (trxyDH1710)Tongren Science and Technology Planning Project ((2018)22)。
文摘In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
文摘From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.
文摘In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.
文摘Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportunities to enhance the performance of signal processing in such applications and even motivate new ones.However,the curse of dimensionality is always a challenge when processing such high-dimensional signals.In practical tasks,high-dimensional signals need to be acquired,processed,and analyzed with high accuracy,robustness,and computational efficiency.This special section aims to address these challenges,where articles attempt to develop new theories and methods that are best suited to the high dimensional nature of the signals involved,and explore modern and emerging applications in this area.
基金Supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)de la Dirección General de Asuntos de Personal Académico,No.IN212722 and No.IA208424Consejo Mexiquense de Ciencia y Tecnología,No.CS000132Consejo Nacional de Humanidades,Ciencia y Tecnología,No.CF-2023-I-563.
文摘Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
基金supported by the major key project of Peng Cheng Laboratory under grant PCL2023AS31 and PCL2023AS1-2the National Key Research and Development Program of China(No.2019YFA0706604)the Natural Science Foundation(NSF)of China(Nos.61976169,62293483,62371451)。
文摘The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.