Dynamic protein-protein interactions are essential for proper cell functioning.Homointeraction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interaction...Dynamic protein-protein interactions are essential for proper cell functioning.Homointeraction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways.Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms.The emerging optogenetic technology,based on genetically encoded light-sensitive proteins,provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision.Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.展开更多
Cells are crowded microenvironments filled with macromolecules undergoing constant phys- ical and chemical interactions. The physicochemical makeup of the cells aff)cts various cellular responses, determines cell-cel...Cells are crowded microenvironments filled with macromolecules undergoing constant phys- ical and chemical interactions. The physicochemical makeup of the cells aff)cts various cellular responses, determines cell-cell interactions and influences cell decisions. Chemical and physical properties diff)r between cells and within cells. Moreover, these properties are subject to dynamic changes in response to environmental signals, which often demand adjustments in the chemical or physical states of intracellular molecules. Indeed, cellular responses such as gene expression rely on the faithful relay of information from the outside to the inside of the cell, a process terrned signal transduction. The signal often traverses a complex path across subcellular spaces with variable physical chemistry, sometimes even influencing it. Understanding the molecular states of such signaling molecules and their intracellular environments is vital to our understanding of the cell. Exploring such intricate spaces is possible today largely because of experimental and theoretical tools. Here, we focus on one tool that is commonly used in chemical physics studies light. We summarize recent work which uses light to both visualize the cellular environment and also control intracel- lular processes along the axis of signal transduction. We highlight recent accomplishments in optical microscopy and optogenetics, an emerging experimental strategy which utilizes light to control the molecular processes in live cells. We believe that optogenetics lends un- precedented spatiotemporal precision to the manipulation of physicochemical properties in biological contexts. We hope to use this work to demonstrate new opportunities for chemical physicists who are interested in pursuing biological and biomedical questions.展开更多
Ethylene insensitive 2 (EIN2), an integral membrane protein of the ER network, has been identified as the central regulator of the ethylene signaling pathway. Still, the mechanism by which the ethylene signal is tra...Ethylene insensitive 2 (EIN2), an integral membrane protein of the ER network, has been identified as the central regulator of the ethylene signaling pathway. Still, the mechanism by which the ethylene signal is transferred from the receptors to EIN2 has not been solved yet. Here, we show that protein phosphorylation is a key mechanism to control the interaction of EIN2 and the receptors. In vivo and in vitro fluorescence studies reveal that the kinase domain of the receptors is essential for the interaction. Cyanide, an ethylene agonist, which is known to reduce auto-phosphorylation of the ethylene receptor ethylene resistant 1 (ETR1) or a mutation in the kinase domain of ETR1 that prevents autophosphorylation (H353A), increases the affinity of the receptors for EIN2. On the other hand, mimicking permanent auto-phosphorylation of ETR1 as in the mutant H353E releases the EiN2-ETR1 interaction from the control by the plant hormone. Based on our data, we propose a novel model on the integration of EIN2 in the ethylene signaling cascade.展开更多
p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium...p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them is b-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the auto-phosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.展开更多
基金supported by a Shun Hing Institute of Advanced Engineering Grant(No.4720247)a General Research Fund/Early Career Scheme(No.24201919)from the Research Grants Council of Hong Kong Special Administrative Region(to LD)。
文摘Dynamic protein-protein interactions are essential for proper cell functioning.Homointeraction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways.Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms.The emerging optogenetic technology,based on genetically encoded light-sensitive proteins,provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision.Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
基金supported by the School of Molecular Cell Biology at the University of Illinois at Urbana-Champaign
文摘Cells are crowded microenvironments filled with macromolecules undergoing constant phys- ical and chemical interactions. The physicochemical makeup of the cells aff)cts various cellular responses, determines cell-cell interactions and influences cell decisions. Chemical and physical properties diff)r between cells and within cells. Moreover, these properties are subject to dynamic changes in response to environmental signals, which often demand adjustments in the chemical or physical states of intracellular molecules. Indeed, cellular responses such as gene expression rely on the faithful relay of information from the outside to the inside of the cell, a process terrned signal transduction. The signal often traverses a complex path across subcellular spaces with variable physical chemistry, sometimes even influencing it. Understanding the molecular states of such signaling molecules and their intracellular environments is vital to our understanding of the cell. Exploring such intricate spaces is possible today largely because of experimental and theoretical tools. Here, we focus on one tool that is commonly used in chemical physics studies light. We summarize recent work which uses light to both visualize the cellular environment and also control intracel- lular processes along the axis of signal transduction. We highlight recent accomplishments in optical microscopy and optogenetics, an emerging experimental strategy which utilizes light to control the molecular processes in live cells. We believe that optogenetics lends un- precedented spatiotemporal precision to the manipulation of physicochemical properties in biological contexts. We hope to use this work to demonstrate new opportunities for chemical physicists who are interested in pursuing biological and biomedical questions.
文摘Ethylene insensitive 2 (EIN2), an integral membrane protein of the ER network, has been identified as the central regulator of the ethylene signaling pathway. Still, the mechanism by which the ethylene signal is transferred from the receptors to EIN2 has not been solved yet. Here, we show that protein phosphorylation is a key mechanism to control the interaction of EIN2 and the receptors. In vivo and in vitro fluorescence studies reveal that the kinase domain of the receptors is essential for the interaction. Cyanide, an ethylene agonist, which is known to reduce auto-phosphorylation of the ethylene receptor ethylene resistant 1 (ETR1) or a mutation in the kinase domain of ETR1 that prevents autophosphorylation (H353A), increases the affinity of the receptors for EIN2. On the other hand, mimicking permanent auto-phosphorylation of ETR1 as in the mutant H353E releases the EiN2-ETR1 interaction from the control by the plant hormone. Based on our data, we propose a novel model on the integration of EIN2 in the ethylene signaling cascade.
基金the National Natural Science Foundation of China (Grant No. 39730140).
文摘p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them is b-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the auto-phosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.