Nuclear magnetic resonance (NMR) is one of the experimental schemes for quantum computation. Most initial state of quantum algorithm in NMR computation is the pseudopure state. Until now, there are several methods to ...Nuclear magnetic resonance (NMR) is one of the experimental schemes for quantum computation. Most initial state of quantum algorithm in NMR computation is the pseudopure state. Until now, there are several methods to prepare pseudopure state. This note, based on the idea of controlled-not (CNOT) gates combination, has analyzed the characteristics of this method in the odd- and even-qubit system. Also, we have designed the pulse sequence for a 4-qubit sample to obtain pseudopure state, and realized it in the experiment. This method reduces the complexity of experiment and gives a high signal-to-noise (S/N) ratio.展开更多
Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved b...Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (Vs), wire feed rate (Vf), and wire current (/), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.19974064).
文摘Nuclear magnetic resonance (NMR) is one of the experimental schemes for quantum computation. Most initial state of quantum algorithm in NMR computation is the pseudopure state. Until now, there are several methods to prepare pseudopure state. This note, based on the idea of controlled-not (CNOT) gates combination, has analyzed the characteristics of this method in the odd- and even-qubit system. Also, we have designed the pulse sequence for a 4-qubit sample to obtain pseudopure state, and realized it in the experiment. This method reduces the complexity of experiment and gives a high signal-to-noise (S/N) ratio.
文摘Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (Vs), wire feed rate (Vf), and wire current (/), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.