A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an em...A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructur...Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructure and the particle size distribution of the sols. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer were used to characterize the surface microstructure and the optical properties of the silica films. Stability of the sols during long-term storage was investigated. Moreover,the dispersion relation of the optical constants of the silica films, and the control of the microstructure and properties of the films by changing the catalysis conditions during sol-gel process were also discussed.展开更多
For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in mic...For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in microns are formed by emulsifying an organic phase consisting of butyl-stearate as core material. The silica shell was formed via hydrolysis and condensation from tetraethyl silicate with acetate as catalyst. The SEM photographs show the particles possess spherical morphology and core-shell structure. The as-prepared silica microcapsules mainly consist of microsphere in the diameter of 3-7 μm and the median diameter of these microcapsules equals to 5.2 μm. The differential scanning calorimetry(DSC) curves indicate that the latent heat and the melting point of microcapsules are 86 J/g and 22.6 ℃,respectively. The results of DSC and TG further testify the microcapsules with core-shell structure.展开更多
Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of...Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.展开更多
It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeabili...It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.展开更多
Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface ...Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.展开更多
An emulsion of polystyrene/poly (butylacrylate-methyl methacrylate acrylic acid) core/shell latex particles (PS/P (BA-MMA-AA)) has been prepared by use of three synthetic methods. The effects of synthetic methods on t...An emulsion of polystyrene/poly (butylacrylate-methyl methacrylate acrylic acid) core/shell latex particles (PS/P (BA-MMA-AA)) has been prepared by use of three synthetic methods. The effects of synthetic methods on the distribution of carboxyl groups in latex particles were studied. The results show that the seed emulsion polymerization in which the pre-emulsified monomers were added by dropping method to the second stage is the best technique for obtaining the optimum distribution of carboxyl groups on the surface of the latex particles. Furthermore, by using PS/P (BA-MMA-AA), a type of novel composite emulsion of silica sol-PS/P (BA-MMA-AA) was synthesized with the above method. By observation through transmission EM, the morphology of the latex particles obtained shows that a composite structure has been formed between silica sol particles and organic polymer particles.展开更多
An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through...An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.展开更多
An innovative approach to H2 S capture has been developed using several metal-based ionic liquids([Bmim]Cl·CuCl_2, [Bmim]Cl·FeCl_3, [Bmim]Cl·ZnCl_2, [Bmim]Br·CuCl_2, and [Bmim]Br·FeCl_3) immob...An innovative approach to H2 S capture has been developed using several metal-based ionic liquids([Bmim]Cl·CuCl_2, [Bmim]Cl·FeCl_3, [Bmim]Cl·ZnCl_2, [Bmim]Br·CuCl_2, and [Bmim]Br·FeCl_3) immobilized on the sol-gel derived silica, which is superior to purely viscous ionic liquid with a crucial limit of high temperature, low mass transfer rate,and mass loss. The adsorbents were characterized by the Fourier transform infrared spectrometer, transmission electron microscope, N_2 adsorption/desorption, X-ray photoelectron spectroscopy, and thermal analysis techniques. The effects of the metal and halogen in IL, the loading amount of IL, and the adsorption temperature were studied by dynamic adsorption experiments at a gas flow rate of 100 mL/min. The H2 S adsorption results have showed that the optimal adsorbent and adsorption temperature are 5% [Bmim]Cl·CuCl_2/silica gel and 20—50 ℃, respectively. H_2 S can be captured and oxidized to elemental sulfur, and [Bmim]Cl·CuCl_2/silica gel can be readily regenerated by air. The excellent efficiency of H2 S removal may be attributed to the formation of nano-scaled and high-concentration [Bmim]Cl·CuCl_2 confined in silica gel, indicating that the immobilization of [Bmim]Cl·CuCl_2 on the sol-gel derived silica can be used for H2 S removal promisingly.展开更多
In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric...In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric acid-hydrochloric acid, acetic acid, hydrochloric acid and nitric acid were add to silica sol. Conversely, in order to control the rate of hydrolysis and to increase the rate of polymerization, basic catalyst of ammonia and ammonia hydroxyl were introduced in to the solution. Nickel specimens of known surface roughness were chemically cleaned and prepared by dipping in the sols. In order to produce a suitable silica coating the drying and firing cycles were optimized on these substrates. The structure and uniformity of the coatings produced were examined by scanning electron microscopy. Coatings composition was determined using glow discharge optical spectroscopy and EDAX microanalysis. Experimental result showed that hydrochloric acid, acetic acid, ammonia and acetic acid - ammonia are suitable catalytic agents for silica coating formation on nickel type substrate.展开更多
The phase separation and gel formation behavior in an alkoxy-derived silica sol-gel system containing C16EO15 has been investigated. Various gel morphologies similar to other sol-gel systems containing organic additiv...The phase separation and gel formation behavior in an alkoxy-derived silica sol-gel system containing C16EO15 has been investigated. Various gel morphologies similar to other sol-gel systems containing organic additives were obtained by changing the preparation conditions. Micrometer-range interconnected porous gels were obtained by freezing transitional structures of phase separation in the sol-gel process. The dependence of the resulting gel morphology on several important reaction parameters such as the starting composition, reaction temperature and acid catalyst concentration was studied in detail. The experimental results indicate that the gel morphology is mainly determined by the time relation between the onset of phase separation and gel formation.展开更多
Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network...Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.展开更多
Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing t...Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.展开更多
基金Supported by Science and Technology Commission of Shanghai Municipality (No. 0212nm008).
文摘A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金the National Natural Science Foundation of China(Grant No.20133040)the Chinese National Foundation of High Technology(2002AA842052)+1 种基金the Shanghai Nanotechnology Promotion Center(0352nm022,0352nm056)the Shanghai International Cooperation Program and Trans-Century Training Programme Foundation for the Talents by the State Education Commission.
文摘Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructure and the particle size distribution of the sols. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer were used to characterize the surface microstructure and the optical properties of the silica films. Stability of the sols during long-term storage was investigated. Moreover,the dispersion relation of the optical constants of the silica films, and the control of the microstructure and properties of the films by changing the catalysis conditions during sol-gel process were also discussed.
基金Project(50572045) supported by the National Natural Science Foundation of Chinaproject supported by Innovation Fund from the PetroChina Company Limited
文摘For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in microns are formed by emulsifying an organic phase consisting of butyl-stearate as core material. The silica shell was formed via hydrolysis and condensation from tetraethyl silicate with acetate as catalyst. The SEM photographs show the particles possess spherical morphology and core-shell structure. The as-prepared silica microcapsules mainly consist of microsphere in the diameter of 3-7 μm and the median diameter of these microcapsules equals to 5.2 μm. The differential scanning calorimetry(DSC) curves indicate that the latent heat and the melting point of microcapsules are 86 J/g and 22.6 ℃,respectively. The results of DSC and TG further testify the microcapsules with core-shell structure.
基金the National Natural Science Foundation of China(No:69978017,20133040)Shanghai Key Subject Programme,Chinese Foundation of High Technology(2002AA842052)Shanghai Natural Science Foundation(02ZE14101)as well as Shanghai Nanotechnology Promotion Center(0159um039).
文摘Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.
基金This work was supported by National Natural Science Foundation of China(Nos.52034007,52074263,52108365 and 52104104)the Post-graduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX21_2340).
文摘It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.
文摘Silica sol prepared by sol-gel method was introduced into poly (butyl acrylate) (PBA)/poly (butyl acrylate-styrene-methacryloxypropyl trimethoxysilane) (PSBM) core-shell emulsions to prepare a series of paper surface sizing agents. The rheological measurement indicated that PSBM emulsions exhibited shear-thinning behavior, and the phenomena became more pronounced with increasing silica sol concentration. Dynamic mechanical analysis (DMA) demonstrated that the stronger interfacial interaction between silica sol and polymer matrix, but microphase separation took place with excess silica sol. Thereby the tensile strength and thermal stability of emulsion films were increased with desirable silica sol concentration, and when silica sol concentration was greater than 6 wt%, the tensile strength leveled off and the decomposition temperature decreased from 351.19℃ to 331.63℃. The degree of crystallinity increased from 5.12% to 10.98% with 4% silica sol addition, resulting in enhanced rigidity of films. Furthermore, the interaction between polymer and fiber was improved with certain amount of silica sol, resulting in improved sizing degree, ring crush strength, surface strength and folding strength. However, excessive crosslinking will be harmful for the properties of sized paper.
文摘An emulsion of polystyrene/poly (butylacrylate-methyl methacrylate acrylic acid) core/shell latex particles (PS/P (BA-MMA-AA)) has been prepared by use of three synthetic methods. The effects of synthetic methods on the distribution of carboxyl groups in latex particles were studied. The results show that the seed emulsion polymerization in which the pre-emulsified monomers were added by dropping method to the second stage is the best technique for obtaining the optimum distribution of carboxyl groups on the surface of the latex particles. Furthermore, by using PS/P (BA-MMA-AA), a type of novel composite emulsion of silica sol-PS/P (BA-MMA-AA) was synthesized with the above method. By observation through transmission EM, the morphology of the latex particles obtained shows that a composite structure has been formed between silica sol particles and organic polymer particles.
基金Funded by the Guangdong Well-Silicasol Company Limited,China
文摘An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.
基金financially supported by the Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAC28B01)the Jiangsu Key Laboratory of Anaerobic Biotechnology (Jiangnan University) Supported Research Project (No. JKLAB201703)
文摘An innovative approach to H2 S capture has been developed using several metal-based ionic liquids([Bmim]Cl·CuCl_2, [Bmim]Cl·FeCl_3, [Bmim]Cl·ZnCl_2, [Bmim]Br·CuCl_2, and [Bmim]Br·FeCl_3) immobilized on the sol-gel derived silica, which is superior to purely viscous ionic liquid with a crucial limit of high temperature, low mass transfer rate,and mass loss. The adsorbents were characterized by the Fourier transform infrared spectrometer, transmission electron microscope, N_2 adsorption/desorption, X-ray photoelectron spectroscopy, and thermal analysis techniques. The effects of the metal and halogen in IL, the loading amount of IL, and the adsorption temperature were studied by dynamic adsorption experiments at a gas flow rate of 100 mL/min. The H2 S adsorption results have showed that the optimal adsorbent and adsorption temperature are 5% [Bmim]Cl·CuCl_2/silica gel and 20—50 ℃, respectively. H_2 S can be captured and oxidized to elemental sulfur, and [Bmim]Cl·CuCl_2/silica gel can be readily regenerated by air. The excellent efficiency of H2 S removal may be attributed to the formation of nano-scaled and high-concentration [Bmim]Cl·CuCl_2 confined in silica gel, indicating that the immobilization of [Bmim]Cl·CuCl_2 on the sol-gel derived silica can be used for H2 S removal promisingly.
基金supported by electroceramics research center in Malek Ashtar university of Technology(Shahin-Shahr)and Isfahan university of Technology
文摘In this research work silica coating was produced on nickel substrates by a sol-gel process. In order to increase the rate of hydrolysis and to reduce the rate of polymerization several acid catalysts including nitric acid-hydrochloric acid, acetic acid, hydrochloric acid and nitric acid were add to silica sol. Conversely, in order to control the rate of hydrolysis and to increase the rate of polymerization, basic catalyst of ammonia and ammonia hydroxyl were introduced in to the solution. Nickel specimens of known surface roughness were chemically cleaned and prepared by dipping in the sols. In order to produce a suitable silica coating the drying and firing cycles were optimized on these substrates. The structure and uniformity of the coatings produced were examined by scanning electron microscopy. Coatings composition was determined using glow discharge optical spectroscopy and EDAX microanalysis. Experimental result showed that hydrochloric acid, acetic acid, ammonia and acetic acid - ammonia are suitable catalytic agents for silica coating formation on nickel type substrate.
文摘The phase separation and gel formation behavior in an alkoxy-derived silica sol-gel system containing C16EO15 has been investigated. Various gel morphologies similar to other sol-gel systems containing organic additives were obtained by changing the preparation conditions. Micrometer-range interconnected porous gels were obtained by freezing transitional structures of phase separation in the sol-gel process. The dependence of the resulting gel morphology on several important reaction parameters such as the starting composition, reaction temperature and acid catalyst concentration was studied in detail. The experimental results indicate that the gel morphology is mainly determined by the time relation between the onset of phase separation and gel formation.
基金This work was supported by the Ford-China Research and Development Fund (No.9415311).
文摘Nano silica-modified epoxy resins were synthesized by the sol-gel process, The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.
文摘Silica and montmorillonite-supported silica nanoparticles were prepared via an acid one step sol-gel process. The synthesized solids were characterized using XRD, FTIR, TEM and N2 adsorption. The effect of preparing temperatures on the structure and properties of the silica nanoparticles were studied. The results show that the increase of annealing temperature from 25 to 200℃, don’t change amorphous state of silica. While for montmorillonite-supported silica the clay platelets are delaminated during the sol-gel process. TEM results showed that the average particle size of silica is increased by increasing temperature due to the particle sintering and the clay-silica nanoparticles possessed core–shell morphology with diameter of 29 nm. The surface area measurements showed that by increasing annealing temperature the surface area was decreased due to aggregation of particle. The clay-silica sample showed lower average pore width than that of the silica prepared at 200℃ indicating that it has a macropores structure. The adsorption efficiency of the prepared samples was tested by adsorption of protoporphyrin IX. The highest adsorption efficiency was found for SiO2 prepared at 200℃. Temkin model describe the equilibrium of adsorption of protoporphyrin IX on caly-silica nanoparticles under different conditions.