In order to improve the proton conductivity of hollow silica spheres (HSS)/perfluorosulfonic acid ion-exchange (PFSA) composite membranes as proton exchange membrane,sulfonic acid groups were grafted onto the surf...In order to improve the proton conductivity of hollow silica spheres (HSS)/perfluorosulfonic acid ion-exchange (PFSA) composite membranes as proton exchange membrane,sulfonic acid groups were grafted onto the surfaces of HSS via post grafting methods.TEM images and FT-IR spectra of the obtained sulfonic acid groups modified hollow silica spheres (SAMHSS) illustrated that the sulfonic acid groups were successfully grafted onto the surfaces of HSS.Water uptake and swelling degree of SAMHSS/PFSA composite membranes were found much higher than those of HSS/PFSA membranes due to the introduction of hydrophilic sulfonic acid groups.In a range from 50 ℃ to 130 ℃,the highest conductivity of composite membranes was obtained when 5 wt% SAMHSS was loaded.The maximum conductivity reached 7.5×10-2 S·cm-1 at 100 ℃ and 100% relative humidity,even the temperature increased to 130 ℃,the conductivity of composite membranes with 5 wt% SAMHSS could reach 3.7×10-2 S·cm-1 at 100 % relative humidity,while the conductivity of the recast PFSA was only 2.2×10-3 S·cm-1.展开更多
Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4...Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4 and 5, a hole forms on the surface, due to the fast gelation process and high viscosity of the sol. Scanning electron microscopy, nitrogen adsorption–desorption isotherms, and mercury intrusion method are used to characterize the samples. The hole size is 40–150 μm and the particle size is 450–600 μm. The size can be adjusted by the flow rate of the oil phase.展开更多
The magnetic hollow silica spheres (MHSS) with uniform cavity size and shell thickness were prepared by a simple and “green” method using functionalized SiO2 spheres as templates. Magnetic particles (Fe3O4) were dep...The magnetic hollow silica spheres (MHSS) with uniform cavity size and shell thickness were prepared by a simple and “green” method using functionalized SiO2 spheres as templates. Magnetic particles (Fe3O4) were deposited on the SiO2 surface by varying the molar ratio of [Fe2+]/[Fe3+] and the molar concentration of iron salts. The obtained magnetic hollow silica spheres exhibited a super-paramagnetic behavior at room temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder scattering (XRD) were applied to characterize the MHSS. Besides, their unit cell parameters are calculated according to results indexing to XRD, the MHSS sample prepared at 0.10 M iron salts and 2:1 molar ratio of [Fe2+]/[Fe3+] has a largest cell angle (β) of unit cell. Due to large hollow cavity space and super-paramagnetic characteristics, the inner amino-functionalized MHSS could be labeled with radioisotope 99Tcm to study the MHSS’s magnetic targeting distribution in vivo. These results indicate that the MHSS has potential in the magnetic targeted drug delivery system which reduces the damage to normal cells and improves the therapeutic effect of cancer.展开更多
Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the c...Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the concentration of iron nitrate solution used in the synthesis procedure. Furthermore, the as-prepared HMSMCs still maintain narrow mesopore distribution, high surface area and large pore volume after the hollow cores of hollow mesoporous silica spheres were filled with magnetite particles. Specially, when the saturation magnetization value of as-prepared HMSMCs reaches 22.0 emu/g, the surface area and pore volume of corresponding HMSMCs are 149 m^2/g and 0.19 cm^3/g, respectively, and the pore size is 2.30 nm. The corresponding samples are characterized by X-ray diffraction, N_2 sorption isotherms, transmission electron microscopy and vibrating-sample magnetometer.展开更多
To develop a novel food preservation technology for efficiently enhance bactericidal activity in a long term,hollow mesoporous silica spheres(HMSS)with regular nanostructures were applied to encapsulate natural organi...To develop a novel food preservation technology for efficiently enhance bactericidal activity in a long term,hollow mesoporous silica spheres(HMSS)with regular nanostructures were applied to encapsulate natural organic antimicrobial agents.The chemical structures,morphologies and thermal stabilities of linalool,HMSS and linalool-functionalized hollow mesoporous silica spheres(L-HMSS)nanoparticles were evaluated by polarimeter,field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),fourier transform infrared(FT-IR),thermal gravimetric analyzer(TGA),nitrogen adsorption-desorption,zeta potential and small angle X-ray diffraction(SXRD).The results show that the linalool was successfully introduced into the cavities of HMSS,and the inorganic host exhibited a high loading capacity of about 1500 mg/g.In addition,after 48 h of incubatio n,the minimum bactericidal concentrations(MBC)of L-HMSS against Escherichia coli(E.coli),Salmonella enterica(S.enterica)and Staphylococcus aureus(S.aureus),Listeria monocytogenes(L.monocytogenes)were decreased to be 4(<5)mg/mL and 8(<10)mg/mL,respectively.These results revealed linaloolfunctionalized hollow mesoporous spheres could efficiently improve the bactericidal activities of the organic component.Furthermore,SEM images clearly showed that L-HMSS indeed had an extremely inhibitory effect against gram-negative(E.coli)and gram-positive(S.aureus)by breaking the structure of the cell membrane.This research is of great significance in the application of linalool in nano-delivery system as well as food industry.展开更多
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. ...Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.展开更多
Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales-tens of nanometers with regards to the shell thickness, and hundreds of ...Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales-tens of nanometers with regards to the shell thickness, and hundreds of nanometers in regards to the total diameter. We characterize these structures using dynamic and static light scattering (DLS and SLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), and we demonstrate quantitative agreement among all methods. The ratio between the radius of gyration (SLS) and hydrodynamic radius (DLS) in these particles equals almost unity, corresponding to ideal capsule behavior. We are able to resolve up to 20 diffraction orders of the hollow sphere form factor in SAXS, indicating a narrow size distribution. Data from light and X-ray scattering can be combined to a master curve covering a q-range of four orders of magnitude assessing all hierarchical length scales of the form factor. The measured SLS intensity profiles noticeably change when the scattering contrast between the interior and exterior is altered, whereas the SAXS intensity profiles do not show any significant change. Tight control of the aforementioned length scales in one simple and robust colloidal building block renders these particles suitable as future calibration standards.展开更多
As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hyd...As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries.展开更多
基金Funded by National Natural Science Foundation of China(No.50803046)
文摘In order to improve the proton conductivity of hollow silica spheres (HSS)/perfluorosulfonic acid ion-exchange (PFSA) composite membranes as proton exchange membrane,sulfonic acid groups were grafted onto the surfaces of HSS via post grafting methods.TEM images and FT-IR spectra of the obtained sulfonic acid groups modified hollow silica spheres (SAMHSS) illustrated that the sulfonic acid groups were successfully grafted onto the surfaces of HSS.Water uptake and swelling degree of SAMHSS/PFSA composite membranes were found much higher than those of HSS/PFSA membranes due to the introduction of hydrophilic sulfonic acid groups.In a range from 50 ℃ to 130 ℃,the highest conductivity of composite membranes was obtained when 5 wt% SAMHSS was loaded.The maximum conductivity reached 7.5×10-2 S·cm-1 at 100 ℃ and 100% relative humidity,even the temperature increased to 130 ℃,the conductivity of composite membranes with 5 wt% SAMHSS could reach 3.7×10-2 S·cm-1 at 100 % relative humidity,while the conductivity of the recast PFSA was only 2.2×10-3 S·cm-1.
基金Supported by the National Basic Research Foundation of China(2013CB733600)the National Natural Science Foundation(20976096,21036002)the Innovative Science and Technology Foundation of Petro China(2011D-5006-0407)
文摘Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4 and 5, a hole forms on the surface, due to the fast gelation process and high viscosity of the sol. Scanning electron microscopy, nitrogen adsorption–desorption isotherms, and mercury intrusion method are used to characterize the samples. The hole size is 40–150 μm and the particle size is 450–600 μm. The size can be adjusted by the flow rate of the oil phase.
文摘The magnetic hollow silica spheres (MHSS) with uniform cavity size and shell thickness were prepared by a simple and “green” method using functionalized SiO2 spheres as templates. Magnetic particles (Fe3O4) were deposited on the SiO2 surface by varying the molar ratio of [Fe2+]/[Fe3+] and the molar concentration of iron salts. The obtained magnetic hollow silica spheres exhibited a super-paramagnetic behavior at room temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder scattering (XRD) were applied to characterize the MHSS. Besides, their unit cell parameters are calculated according to results indexing to XRD, the MHSS sample prepared at 0.10 M iron salts and 2:1 molar ratio of [Fe2+]/[Fe3+] has a largest cell angle (β) of unit cell. Due to large hollow cavity space and super-paramagnetic characteristics, the inner amino-functionalized MHSS could be labeled with radioisotope 99Tcm to study the MHSS’s magnetic targeting distribution in vivo. These results indicate that the MHSS has potential in the magnetic targeted drug delivery system which reduces the damage to normal cells and improves the therapeutic effect of cancer.
基金support of this research by the National Science Foundation of China(Grant No.50702072)Chinese Academy of Science(Grant No.KJCX2.YW.M02)+1 种基金National 863 Projects(Grant No.2007AA03Z317)Shanghai Nano-Science Program(Grant No.0852nm03900)
文摘Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the concentration of iron nitrate solution used in the synthesis procedure. Furthermore, the as-prepared HMSMCs still maintain narrow mesopore distribution, high surface area and large pore volume after the hollow cores of hollow mesoporous silica spheres were filled with magnetite particles. Specially, when the saturation magnetization value of as-prepared HMSMCs reaches 22.0 emu/g, the surface area and pore volume of corresponding HMSMCs are 149 m^2/g and 0.19 cm^3/g, respectively, and the pore size is 2.30 nm. The corresponding samples are characterized by X-ray diffraction, N_2 sorption isotherms, transmission electron microscopy and vibrating-sample magnetometer.
基金The National Natural Science Foundation of China(No.31701678)the Shanghai Key Research Projects of Promoting Agriculture by Science and Technology(No.2019-02-08-00-15-F01147)supported this work。
文摘To develop a novel food preservation technology for efficiently enhance bactericidal activity in a long term,hollow mesoporous silica spheres(HMSS)with regular nanostructures were applied to encapsulate natural organic antimicrobial agents.The chemical structures,morphologies and thermal stabilities of linalool,HMSS and linalool-functionalized hollow mesoporous silica spheres(L-HMSS)nanoparticles were evaluated by polarimeter,field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),fourier transform infrared(FT-IR),thermal gravimetric analyzer(TGA),nitrogen adsorption-desorption,zeta potential and small angle X-ray diffraction(SXRD).The results show that the linalool was successfully introduced into the cavities of HMSS,and the inorganic host exhibited a high loading capacity of about 1500 mg/g.In addition,after 48 h of incubatio n,the minimum bactericidal concentrations(MBC)of L-HMSS against Escherichia coli(E.coli),Salmonella enterica(S.enterica)and Staphylococcus aureus(S.aureus),Listeria monocytogenes(L.monocytogenes)were decreased to be 4(<5)mg/mL and 8(<10)mg/mL,respectively.These results revealed linaloolfunctionalized hollow mesoporous spheres could efficiently improve the bactericidal activities of the organic component.Furthermore,SEM images clearly showed that L-HMSS indeed had an extremely inhibitory effect against gram-negative(E.coli)and gram-positive(S.aureus)by breaking the structure of the cell membrane.This research is of great significance in the application of linalool in nano-delivery system as well as food industry.
基金This project was supported by the National Natural Science Foundation of China (Grant No. 51406109).
文摘Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
文摘Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales-tens of nanometers with regards to the shell thickness, and hundreds of nanometers in regards to the total diameter. We characterize these structures using dynamic and static light scattering (DLS and SLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), and we demonstrate quantitative agreement among all methods. The ratio between the radius of gyration (SLS) and hydrodynamic radius (DLS) in these particles equals almost unity, corresponding to ideal capsule behavior. We are able to resolve up to 20 diffraction orders of the hollow sphere form factor in SAXS, indicating a narrow size distribution. Data from light and X-ray scattering can be combined to a master curve covering a q-range of four orders of magnitude assessing all hierarchical length scales of the form factor. The measured SLS intensity profiles noticeably change when the scattering contrast between the interior and exterior is altered, whereas the SAXS intensity profiles do not show any significant change. Tight control of the aforementioned length scales in one simple and robust colloidal building block renders these particles suitable as future calibration standards.
基金supported by the National Natural Science Foundation of China (Grant No. 51472083)
文摘As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries.