A novel spray-assisted carbonation microreaction method for the synthesis of mesoporous silica microspheres is reported.The synthetic process comprises the preparation of a silica sol via a carbonation reaction,rapid ...A novel spray-assisted carbonation microreaction method for the synthesis of mesoporous silica microspheres is reported.The synthetic process comprises the preparation of a silica sol via a carbonation reaction,rapid gelation at high temperature,and subsequent rapid solvent evaporation by spray drying.The carbonation microreaction was conducted in a membrane dispersion microreactor,in the presence of sodium silicate and carbon dioxide reactants.The as-synthesized silica microspheres exhibit a uniform mesostructure,excellent dispersity,and a narrow particle size distribution,with average diameters of 1-2 μm,Brunauer-Emmett-Teller surface areas of 300-1149m2/g,and total pore volumes of 0.21-1.82 cm3/g.Relatively low concentrations of the silicate species and well-controlled silica condensation rates are responsible for the formation of the observed spherical morphology.The synthetic process is of significant practical importance as a result of using low-cost raw materials,and because of the excellent controllability and process stability displayed.Furthermore,this rapid and flexible method may be extended to the synthesis of various silica materials and their composites.展开更多
The present manuscript describes a facile and versatile method for preparing uniform wrinkled silica microspheres with diameters of tens of microns.The method comprises a one-pot emulsion/sol-gel method using silica p...The present manuscript describes a facile and versatile method for preparing uniform wrinkled silica microspheres with diameters of tens of microns.The method comprises a one-pot emulsion/sol-gel method using silica precursors of organosilane and tetraethoxysilane.By controlling the sol-to-gel transition of the silica precursors,a series of silica microspheres based on uniform emulsion droplets was synthesized by membrane emulsification.The silica microspheres had a variety of surface morphologies ranging from smooth,maze-like wrinkles to polygon-like ravines.It was possible to alter the surface morphologies of the microspheres by controlling the amount of organosilane in the dispersed phase and the amount of ammonia catalyst in the continuous phase of the emulsion.The grooves on the wrinkled microspheres were able to trap polymer nanoparticles of matching size,thereby demonstrating the potential usefulness of the microspheres in separation science and drug delivery.展开更多
基金We gratefully acknowledge the support from the National Nat-ural Science Foundation of China(Nos.91334201,U1463208 and 21506110).
文摘A novel spray-assisted carbonation microreaction method for the synthesis of mesoporous silica microspheres is reported.The synthetic process comprises the preparation of a silica sol via a carbonation reaction,rapid gelation at high temperature,and subsequent rapid solvent evaporation by spray drying.The carbonation microreaction was conducted in a membrane dispersion microreactor,in the presence of sodium silicate and carbon dioxide reactants.The as-synthesized silica microspheres exhibit a uniform mesostructure,excellent dispersity,and a narrow particle size distribution,with average diameters of 1-2 μm,Brunauer-Emmett-Teller surface areas of 300-1149m2/g,and total pore volumes of 0.21-1.82 cm3/g.Relatively low concentrations of the silicate species and well-controlled silica condensation rates are responsible for the formation of the observed spherical morphology.The synthetic process is of significant practical importance as a result of using low-cost raw materials,and because of the excellent controllability and process stability displayed.Furthermore,this rapid and flexible method may be extended to the synthesis of various silica materials and their composites.
基金supported by the project of National Natural Science Foundation of China(No.21676275 and No.22078334).
文摘The present manuscript describes a facile and versatile method for preparing uniform wrinkled silica microspheres with diameters of tens of microns.The method comprises a one-pot emulsion/sol-gel method using silica precursors of organosilane and tetraethoxysilane.By controlling the sol-to-gel transition of the silica precursors,a series of silica microspheres based on uniform emulsion droplets was synthesized by membrane emulsification.The silica microspheres had a variety of surface morphologies ranging from smooth,maze-like wrinkles to polygon-like ravines.It was possible to alter the surface morphologies of the microspheres by controlling the amount of organosilane in the dispersed phase and the amount of ammonia catalyst in the continuous phase of the emulsion.The grooves on the wrinkled microspheres were able to trap polymer nanoparticles of matching size,thereby demonstrating the potential usefulness of the microspheres in separation science and drug delivery.