Nanomaterials have been widely used in the past few decades due to their proven capacity to enhance the mechanical properties of materials. While many studies have sought to improve the understanding of how nanomateri...Nanomaterials have been widely used in the past few decades due to their proven capacity to enhance the mechanical properties of materials. While many studies have sought to improve the understanding of how nanomaterials affect the behavior of concrete, additional research is needed in order to achieve the full potential of the material, especially in the presence of supplementary cementitious materials. This study aims to investigate the mechanical properties of cement mortars incorporating both nano-silica (NS) and class F fly ash (FA). Furthermore, mercury intrusion porosimetry (MIP) was performed to study its effect on pore characteristics, and thermogravimetric analysis (TGA) was performed to measure the calcium hydroxide Ca(OH)2 content in the mixtures. It was found that using nano-silica enhances the compressive strength, reduces the total porosity and accelerates the pozzolanic reaction.展开更多
This standard specifies the classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silica refractory mortars.
为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰...为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰对水泥胶砂抗硫酸侵蚀作用的影响。实验研究表明:随着硅灰掺量的增加,水泥胶砂的抗硫酸侵蚀能力增强,XRD(x-ray diffraction)衍射表明,在硫酸侵蚀下表面生成物为二水石膏(CaSO_(4)·2H_(2)O),反应时会消耗Ca(OH)_(2),同时也会产生一定的体积膨胀;SEM(scanning electron microscope)检测表明,掺入硅灰可以提高试样的密实度,从而提高水泥胶砂的抗硫酸侵蚀性能。从宏观和微观角度综合来看,硅灰掺量为15%时的抗硫酸侵蚀性能最好。展开更多
This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil...This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil-refinery. For this purpose, two series of mortars were prepared by partially replacing cement with 5%, 10% and 15% of wFCC catalyst. The main difference between the two series of mortars is the sand reactivity used in their composition. The results revealed that wFCC catalyst blended cement mortars exhibit an increased resistance against capillary water absorption and chloride migration, as well as a considerable inhibition effect on deleterious ASR expansion. However, under the adopted experimental conditions the incorporation of wFCC catalyst in mortars decreases their carbonation resistance.展开更多
采用快速砂浆棒法,研究废旧轮胎橡胶粉(WRP)和硅灰(SF)单掺及两者复掺对碱硅酸反应(ASR)引起有害膨胀的抑制作用,并分析WRP粒径对ASR抑制作用的影响;结合扫描电镜和X射线衍射等方法,揭示了两者对活性骨料ASR的抑制机理.结果表明:WRP能...采用快速砂浆棒法,研究废旧轮胎橡胶粉(WRP)和硅灰(SF)单掺及两者复掺对碱硅酸反应(ASR)引起有害膨胀的抑制作用,并分析WRP粒径对ASR抑制作用的影响;结合扫描电镜和X射线衍射等方法,揭示了两者对活性骨料ASR的抑制机理.结果表明:WRP能够抑制ASR,但其粒径会影响抑制效果,其中0.125 mm (120目) WRP效果最佳;SF对ASR抑制作用早期较好,而后期不够理想;复掺SF和WRP对抑制ASR膨胀协同作用优异,前期SF发生火山灰反应,水化产物具有缚碱能力,有效抑制ASR负面效应,改善了WRP周边砂浆的密实性,后期WRP利用其物理性能降低膨胀压,从而协同缓解了ASR引起的膨胀.展开更多
文摘Nanomaterials have been widely used in the past few decades due to their proven capacity to enhance the mechanical properties of materials. While many studies have sought to improve the understanding of how nanomaterials affect the behavior of concrete, additional research is needed in order to achieve the full potential of the material, especially in the presence of supplementary cementitious materials. This study aims to investigate the mechanical properties of cement mortars incorporating both nano-silica (NS) and class F fly ash (FA). Furthermore, mercury intrusion porosimetry (MIP) was performed to study its effect on pore characteristics, and thermogravimetric analysis (TGA) was performed to measure the calcium hydroxide Ca(OH)2 content in the mixtures. It was found that using nano-silica enhances the compressive strength, reduces the total porosity and accelerates the pozzolanic reaction.
文摘This standard specifies the classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silica refractory mortars.
文摘为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰对水泥胶砂抗硫酸侵蚀作用的影响。实验研究表明:随着硅灰掺量的增加,水泥胶砂的抗硫酸侵蚀能力增强,XRD(x-ray diffraction)衍射表明,在硫酸侵蚀下表面生成物为二水石膏(CaSO_(4)·2H_(2)O),反应时会消耗Ca(OH)_(2),同时也会产生一定的体积膨胀;SEM(scanning electron microscope)检测表明,掺入硅灰可以提高试样的密实度,从而提高水泥胶砂的抗硫酸侵蚀性能。从宏观和微观角度综合来看,硅灰掺量为15%时的抗硫酸侵蚀性能最好。
文摘This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil-refinery. For this purpose, two series of mortars were prepared by partially replacing cement with 5%, 10% and 15% of wFCC catalyst. The main difference between the two series of mortars is the sand reactivity used in their composition. The results revealed that wFCC catalyst blended cement mortars exhibit an increased resistance against capillary water absorption and chloride migration, as well as a considerable inhibition effect on deleterious ASR expansion. However, under the adopted experimental conditions the incorporation of wFCC catalyst in mortars decreases their carbonation resistance.
文摘采用快速砂浆棒法,研究废旧轮胎橡胶粉(WRP)和硅灰(SF)单掺及两者复掺对碱硅酸反应(ASR)引起有害膨胀的抑制作用,并分析WRP粒径对ASR抑制作用的影响;结合扫描电镜和X射线衍射等方法,揭示了两者对活性骨料ASR的抑制机理.结果表明:WRP能够抑制ASR,但其粒径会影响抑制效果,其中0.125 mm (120目) WRP效果最佳;SF对ASR抑制作用早期较好,而后期不够理想;复掺SF和WRP对抑制ASR膨胀协同作用优异,前期SF发生火山灰反应,水化产物具有缚碱能力,有效抑制ASR负面效应,改善了WRP周边砂浆的密实性,后期WRP利用其物理性能降低膨胀压,从而协同缓解了ASR引起的膨胀.