Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.Howeve...Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.However,the high chemical stability of ZnFe_(2)O_(4)in EAF dust poses challenges to Zn recovery.To address this issue,a facile approach that involves oxygen-assisted chlorination using molten MgCl_(2)is proposed.This work focused on elucidating the role of O2 in the reaction between ZnFe_(2)O_(4)and molten MgCl_(2).The results demonstrate that MgCl_(2)effectively broke down the ZnFe_(2)O_(4)structure,and the high O2 atmosphere considerably promoted the sep-aration of Zn from other components in the form of ZnCl_(2).The presence of O2 facilitated the formation of MgFe_(2)O_(4),which stabilized Fe and prevented its chlorination.Furthermore,the excessive use of MgCl_(2)resulted in increased evaporation loss,and high temperatures pro-moted the rapid separation of Zn.Building on these findings,we successfully extracted ZnCl_(2)-enriched volatiles from practical EAF dust through oxygen-assisted chlorination.Under optimized conditions,this method achieved exceptional Zn chlorination percentage of over 97%within a short period,while Fe chlorination remained below 1%.The resulting volatiles contained 85wt%of ZnCl_(2),which can be further processed to produce metallic Zn.The findings offer guidance for the selective recovery of valuable metals,particularly from solid wastes such as EAF dust.展开更多
By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on...By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.展开更多
The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC p...The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC paste was invesigated in this study. It is shown that when 30 weight percent of silica fume is added to the MOC paste, a high strength and water resisting new material with 112MPa compressive strength and 1 00 water resisting coefficient could by obtained.展开更多
Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt...Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt contained in the salt water were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), X-ray diffraction (XRD), infrared transmission spectroscope (IR), and atmospheric corrosion monitor (ACM). The results showed that, with the deposition, atmospheric corrosion of AA2024 could occur when the relative humidity (RH) was lower than 30%. A main crystalline component of corrosion products, layered double hydroxides (LDH), [Mg1-xAlx(OH)2]^x+ Clx-·mH2O (LDH-C1), was determined, which meant that magnesium ion played an important role in the corrosion process. It not only facilitated the corrosion as a result of deliquescence, but also was involved in the corrosion process as a reactant.展开更多
In this work, we demonstrate an in situ phase conversion from basic magnesium chloride(BMC) into magnesium hydroxide whisker by using polar organic solvent at low temperature. The morphology and phase composition of...In this work, we demonstrate an in situ phase conversion from basic magnesium chloride(BMC) into magnesium hydroxide whisker by using polar organic solvent at low temperature. The morphology and phase composition of magnesium hydroxide whiskers prepared at different reaction temperature, alkali concentration and organic solvent were analyzed by X-ray diffraction(XRD) and scanning electronic microscope(SEM). It was found that when one of the organic solvents such as absolute ethyl alcohol, butanol, polyethylene glycol(PEG-400), acetone, et al. was selected as the template, the precursor BMC can transform into whisker-like magnesium hydroxide through precipitate transformation in low temperature and non-hydrothermal system. It can be reasonably explained that the regulation of Mg^2+ solubility by those organic solvents and the sustained release of Mg^2+ dissolution by organic adsorption played a significant role in the formation of magnesium hydroxide whisker via BMC whisker as the precursor.展开更多
Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigate...Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigated using immersion corrosion test in NaCl solutions of different chloride ion concentrations viz.,0.01 M,0.2 M,0.6 M and 1 M.The corroded surface was characterized by an optical microscope and X-ray diffraction.The results showed that the corrosion deterioration of uncoated and coated samples were significantly influenced by chloride ion concentration.The uncoated magnesium and alumina coatings were found to offer a superior corrosion resistance in lower chloride ion concentration NaCl solutions(0.01 M and 0.2 M NaCl).On the other hand the coatings and Mg alloy substrate were found to be highly susceptible to localized damage,and could not provide an effective corrosion protection in solutions containing higher chloride concentrations(0.6 M and 1 M).It was found that the corrosion resistance of the ceramic coatings and base metal gets deteriorated with the increase in the chloride concentrations.展开更多
Soda residue-magnesium oxychloride cement is prepared with soda residue from ammonia soda process method,magnesium oxide and magnesium sulfate heptahydrate as main raw materials,and its consolidation mechanism of chlo...Soda residue-magnesium oxychloride cement is prepared with soda residue from ammonia soda process method,magnesium oxide and magnesium sulfate heptahydrate as main raw materials,and its consolidation mechanism of chloride ion is studied.The results show that the hydration products of soda residue-magnesium oxychloride cement are mainly 5-phase,gypsum and brucite,which exist in the matrix in needle rod shape,long plate shape and hexagonal plate shape,respectively.When the molar ratio of MgO/MgCl_(2) is 8:1,the concentration of MgSO_(4) is 29%,and the mass ratio of soda residue:magnesium oxide:magnesium sulfate heptahydrate is 45.8:36.4:17.8.The chloride ion consolidation effect of the sample is the best,and the chloride ion consolidation content of the 7 d sample is about 93%.The chloride ion consolidation content of the 28 d sample is about 96%.展开更多
Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental...Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.展开更多
A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of ali...A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH;/silica chloride at room temperature,afforded excellent yield of the corresponding amines.展开更多
Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synth...Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1%(mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1∶4 at high temperature and with the differential pressure of NH3 above 30.5kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0.087%(mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn’t mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processe...This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processed by dry blending and twin-screw extrusion. Severe silica fume agglomeration was observed by scanning electron microscope (SEM) in the PVC matrix when 8 phr pure silica fume was used and processed by screw speed of 20 rpm. Its tensile strength was thereby reduced by 38% comparing to unmodified PVC. The silica fume was successfully dispersed while the screw speed was slowed down to 10 rpm to give a stronger screw torque and a longer melt residential time in the extruder. The tensile strength was ’recovered’ to a level comparable to unmodified PVC. Impact test were performed on all formulations extruded at 10 rpm screw speed and synergetic toughening effect was found with 50% substitution and it had the impact strength that was comparable to 8 phr pure AIM toughened PVC.展开更多
Silica-supported tin chloride and titanium tetrachloride were prepared by the reaction of tin chloride and titanium tetrachloride with activated silica gel in refluxing toluene.These solid acids have been employed as ...Silica-supported tin chloride and titanium tetrachloride were prepared by the reaction of tin chloride and titanium tetrachloride with activated silica gel in refluxing toluene.These solid acids have been employed as the catalysts for the synthesis of bisdihydropyrimidin -2(1H)-ones from aromatic dialdehydes,1,3-dicarbonyl compounds and urea at 90℃under solvent-free conditions.展开更多
An impedance type humidity sensor based on the polyacrylic emulsion containing magnesium chloride (MgCl_2) without chemical modification was investigated.The impedances of the sensor were measured from various relati...An impedance type humidity sensor based on the polyacrylic emulsion containing magnesium chloride (MgCl_2) without chemical modification was investigated.The impedances of the sensor were measured from various relative humidity in the frequency range between 0.1kHz and 100 kHz.The sensor has a good sensitivity from 60%RH to 90%RH.According to the experimental results,the response time is about 240 seconds in the adsorption process and 310 seconds in the desorption process.展开更多
Wastewater may contain high levels of the nutrients: nitrogen and phosphorus. Excessive release of nutrients to the environment can cause severe environmental problem such as eutrophication leading to algal blooms, ox...Wastewater may contain high levels of the nutrients: nitrogen and phosphorus. Excessive release of nutrients to the environment can cause severe environmental problem such as eutrophication leading to algal blooms, oxygen deficiency, and fish kills. The forward osmosis (FO) could be a choice of treatment. FO process presents the results of using four kinds of variation in concentration of magnesium chloride (MgCl2) as draw solution and the two kinds of commercial membranes for nutrient rejection in the same cross flow velocity at 0.25 m/s and temperature at 25°C. Nutrients consisting of nitrogen (nitrite, nitrate, and ammonium) and phosphorus (phosphate) in feed solution were successfully rejected with an efficiency of mostly more 95%. The water flux in membrane HTI-NW achieved lower 7.55 - 9.61 L/m2·hr than in membrane HTI-ES that exceeds until 13.58 - 15.10 L/m2·hr. The reverse solute in membrane HTI-NW is seemly constant along all concentration of DS MgCl2 that the chloride diffusion is slightly higher than magnesium. In membrane HTI-ES, the reverse solute of chloride was almost three times than that of magnesium. The concentration of MgCl2 plays a significant role in rejecting nutrients by the Donnan’s potential and the diffusion constant in low and high concentration of DS, respectively.展开更多
The substituted cyclopentadienyl-magnesium-chloride, obtained by exocyclic addition of 6,6-dialkylfulvene and allyl-magnesium-chloride, reacted with the ketone 3, the product was hydrolyzed and dehydrated to give the ...The substituted cyclopentadienyl-magnesium-chloride, obtained by exocyclic addition of 6,6-dialkylfulvene and allyl-magnesium-chloride, reacted with the ketone 3, the product was hydrolyzed and dehydrated to give the 2-(1 ,1-dialkyl-3-butenyl)-6,6-dialkyl-fulvene 5. The structure of 5 was determined by using the 1H NMR spectra of 5 and the adducts of 5 with tetracyanoethylene.展开更多
The corrosion and electrochemical behavior of extruded AZ31D magnesium alloys in NaCl solution were investigated using SEM, XRD and electrochemical method. It is found that AZ31D is susceptive to Cl- ion, and the open...The corrosion and electrochemical behavior of extruded AZ31D magnesium alloys in NaCl solution were investigated using SEM, XRD and electrochemical method. It is found that AZ31D is susceptive to Cl- ion, and the open circuit potential shifts to more negative values with increasing chloride concentration. Pitting occurs at corrosion potential and corrosion area enlarges with enhanced polarization. Tafel slopes of the cathode branches in different testing solution are almost the same. Cl-concentration affects cathode course slightly. High frequency capacitive loops shrink with the increase of Cl- concentration. Corrosion initiates from the grain boundary and spreads to entire surface with time.展开更多
The dehydration and hydration processes of magnesium chloride hydrates were studied by means of frontal chromatography analysis, calorimetry, thermogravimetry and chemical analysis. The mathematical imitation for the ...The dehydration and hydration processes of magnesium chloride hydrates were studied by means of frontal chromatography analysis, calorimetry, thermogravimetry and chemical analysis. The mathematical imitation for the adsorption isotherms of MgCl 2·4H 2O and MgCl 2·2H 2O at different temperatures indicates that Boltzmann Function is the ideal equation to describe those adsorption isotherms. Its adsorption heat is -13.06 kJ/mol and -16.11 kJ/mol, respectively. The adsorption equilibrium constants are also given. From the data obtained, there is a thermodynamical possibility to use partial dehydrated magnesium chloride hydrates as an absorbance to clean water vapor contained in bischophite dehydration equipment and let the protection gas HCl recycle in the fluid bed reaction system.展开更多
The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly...The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re- placement of cement with 25% glass powder slightly decreases the strengthes at ? and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetration resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.展开更多
Mg–Y–Nd alloy(WE43C or Elektron 43)is a heat treatable magnesium wrought alloy that can be used up to 250 ℃ for aerospace application.This alloy has excellent mechanical properties(UTS:up to 345 MPa at room tempera...Mg–Y–Nd alloy(WE43C or Elektron 43)is a heat treatable magnesium wrought alloy that can be used up to 250 ℃ for aerospace application.This alloy has excellent mechanical properties(UTS:up to 345 MPa at room temperature)and improved corrosion resistance.Electrochemical passivation studies were conducted on this alloy under different heat treatment conditions in 0.1 M NaOH solution with the addition of chloride from 0 to 1000 ppm.The passive potential range typically extended to more than 1.5 VAg/AgCl.The transpassive potential was not dependent on the heat treatment condition of the alloy when the chloride concentration increased up to 500 ppm.However,pitting protection potential varied with the heat treatment condition when the chloride addition was 500 ppm or more.The specimen surface was analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and Raman spectroscopy to understand the passivation behavior of this alloy.The passivated surface of the WE43C specimens indicated that the surface layer consisted of MgO,Mg(OH)_(2),and rare earth oxide phases,and the heat treatment conditions did not significantly affect the composition of the surface film.展开更多
文摘Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.However,the high chemical stability of ZnFe_(2)O_(4)in EAF dust poses challenges to Zn recovery.To address this issue,a facile approach that involves oxygen-assisted chlorination using molten MgCl_(2)is proposed.This work focused on elucidating the role of O2 in the reaction between ZnFe_(2)O_(4)and molten MgCl_(2).The results demonstrate that MgCl_(2)effectively broke down the ZnFe_(2)O_(4)structure,and the high O2 atmosphere considerably promoted the sep-aration of Zn from other components in the form of ZnCl_(2).The presence of O2 facilitated the formation of MgFe_(2)O_(4),which stabilized Fe and prevented its chlorination.Furthermore,the excessive use of MgCl_(2)resulted in increased evaporation loss,and high temperatures pro-moted the rapid separation of Zn.Building on these findings,we successfully extracted ZnCl_(2)-enriched volatiles from practical EAF dust through oxygen-assisted chlorination.Under optimized conditions,this method achieved exceptional Zn chlorination percentage of over 97%within a short period,while Fe chlorination remained below 1%.The resulting volatiles contained 85wt%of ZnCl_(2),which can be further processed to produce metallic Zn.The findings offer guidance for the selective recovery of valuable metals,particularly from solid wastes such as EAF dust.
基金Funded by the "Hundred Talents" Project of Chinese Academy of Sciencesthe "Technology Innovation" Project of Chinese Academy of Sciences
文摘By incorporation of fly ash or silica fume into magnesium oxychloride (MOC) cement, a high water resistance material can be formed for successful industrial applications. The influences of fly ash and silica fume on water-resistant property were investigated by SEM and EDS. It is found that the incorporation of fly ash or silica fume can improve the water-resistance of the MOC. The improvement of the water resistance of the MOC incorporated with fly ash or silica fume may be attributed to the alumino-silicate 5·1·8 gel or silicate 5·1·8 gel.
文摘The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC paste was invesigated in this study. It is shown that when 30 weight percent of silica fume is added to the MOC paste, a high strength and water resisting new material with 112MPa compressive strength and 1 00 water resisting coefficient could by obtained.
基金Project(51131007) supported by the National Natural Science Foundation of China
文摘Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt contained in the salt water were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), X-ray diffraction (XRD), infrared transmission spectroscope (IR), and atmospheric corrosion monitor (ACM). The results showed that, with the deposition, atmospheric corrosion of AA2024 could occur when the relative humidity (RH) was lower than 30%. A main crystalline component of corrosion products, layered double hydroxides (LDH), [Mg1-xAlx(OH)2]^x+ Clx-·mH2O (LDH-C1), was determined, which meant that magnesium ion played an important role in the corrosion process. It not only facilitated the corrosion as a result of deliquescence, but also was involved in the corrosion process as a reactant.
基金Supported by the National Basic Research Program of China(2010CB933501,2013CB934302)the Outstanding Youth Fund(21125730)+3 种基金the National Science Foundation Grant(21273237,21103191)the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N50,KJCX2-EW-J02)the Technology Key Project of Fujian Province(2013H0058)the Fund of Fujian Key Laboratory of Nanomaterials(2006L2005)
文摘In this work, we demonstrate an in situ phase conversion from basic magnesium chloride(BMC) into magnesium hydroxide whisker by using polar organic solvent at low temperature. The morphology and phase composition of magnesium hydroxide whiskers prepared at different reaction temperature, alkali concentration and organic solvent were analyzed by X-ray diffraction(XRD) and scanning electronic microscope(SEM). It was found that when one of the organic solvents such as absolute ethyl alcohol, butanol, polyethylene glycol(PEG-400), acetone, et al. was selected as the template, the precursor BMC can transform into whisker-like magnesium hydroxide through precipitate transformation in low temperature and non-hydrothermal system. It can be reasonably explained that the regulation of Mg^2+ solubility by those organic solvents and the sustained release of Mg^2+ dissolution by organic adsorption played a significant role in the formation of magnesium hydroxide whisker via BMC whisker as the precursor.
文摘Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigated using immersion corrosion test in NaCl solutions of different chloride ion concentrations viz.,0.01 M,0.2 M,0.6 M and 1 M.The corroded surface was characterized by an optical microscope and X-ray diffraction.The results showed that the corrosion deterioration of uncoated and coated samples were significantly influenced by chloride ion concentration.The uncoated magnesium and alumina coatings were found to offer a superior corrosion resistance in lower chloride ion concentration NaCl solutions(0.01 M and 0.2 M NaCl).On the other hand the coatings and Mg alloy substrate were found to be highly susceptible to localized damage,and could not provide an effective corrosion protection in solutions containing higher chloride concentrations(0.6 M and 1 M).It was found that the corrosion resistance of the ceramic coatings and base metal gets deteriorated with the increase in the chloride concentrations.
基金Funded by Science and Technology Support Plan Project of the 13th Five-year Plan (No.2018YFD1101002-03)。
文摘Soda residue-magnesium oxychloride cement is prepared with soda residue from ammonia soda process method,magnesium oxide and magnesium sulfate heptahydrate as main raw materials,and its consolidation mechanism of chloride ion is studied.The results show that the hydration products of soda residue-magnesium oxychloride cement are mainly 5-phase,gypsum and brucite,which exist in the matrix in needle rod shape,long plate shape and hexagonal plate shape,respectively.When the molar ratio of MgO/MgCl_(2) is 8:1,the concentration of MgSO_(4) is 29%,and the mass ratio of soda residue:magnesium oxide:magnesium sulfate heptahydrate is 45.8:36.4:17.8.The chloride ion consolidation effect of the sample is the best,and the chloride ion consolidation content of the 7 d sample is about 93%.The chloride ion consolidation content of the 28 d sample is about 96%.
文摘Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.
基金support of this work from the Research Council of Mazandaran University gratefully acknowledged.
文摘A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH;/silica chloride at room temperature,afforded excellent yield of the corresponding amines.
基金Project(2000 G 101) supported by the Key Science and Technology Research Project of Qinghai Province
文摘Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuously followed by filtration as raw materials with a molar ratio of 1∶1 of MgCl2 to NH4Cl, ammonium carnallite was synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1%(mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1∶4 at high temperature and with the differential pressure of NH3 above 30.5kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0.087%(mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn’t mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
文摘This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processed by dry blending and twin-screw extrusion. Severe silica fume agglomeration was observed by scanning electron microscope (SEM) in the PVC matrix when 8 phr pure silica fume was used and processed by screw speed of 20 rpm. Its tensile strength was thereby reduced by 38% comparing to unmodified PVC. The silica fume was successfully dispersed while the screw speed was slowed down to 10 rpm to give a stronger screw torque and a longer melt residential time in the extruder. The tensile strength was ’recovered’ to a level comparable to unmodified PVC. Impact test were performed on all formulations extruded at 10 rpm screw speed and synergetic toughening effect was found with 50% substitution and it had the impact strength that was comparable to 8 phr pure AIM toughened PVC.
文摘Silica-supported tin chloride and titanium tetrachloride were prepared by the reaction of tin chloride and titanium tetrachloride with activated silica gel in refluxing toluene.These solid acids have been employed as the catalysts for the synthesis of bisdihydropyrimidin -2(1H)-ones from aromatic dialdehydes,1,3-dicarbonyl compounds and urea at 90℃under solvent-free conditions.
文摘An impedance type humidity sensor based on the polyacrylic emulsion containing magnesium chloride (MgCl_2) without chemical modification was investigated.The impedances of the sensor were measured from various relative humidity in the frequency range between 0.1kHz and 100 kHz.The sensor has a good sensitivity from 60%RH to 90%RH.According to the experimental results,the response time is about 240 seconds in the adsorption process and 310 seconds in the desorption process.
文摘Wastewater may contain high levels of the nutrients: nitrogen and phosphorus. Excessive release of nutrients to the environment can cause severe environmental problem such as eutrophication leading to algal blooms, oxygen deficiency, and fish kills. The forward osmosis (FO) could be a choice of treatment. FO process presents the results of using four kinds of variation in concentration of magnesium chloride (MgCl2) as draw solution and the two kinds of commercial membranes for nutrient rejection in the same cross flow velocity at 0.25 m/s and temperature at 25°C. Nutrients consisting of nitrogen (nitrite, nitrate, and ammonium) and phosphorus (phosphate) in feed solution were successfully rejected with an efficiency of mostly more 95%. The water flux in membrane HTI-NW achieved lower 7.55 - 9.61 L/m2·hr than in membrane HTI-ES that exceeds until 13.58 - 15.10 L/m2·hr. The reverse solute in membrane HTI-NW is seemly constant along all concentration of DS MgCl2 that the chloride diffusion is slightly higher than magnesium. In membrane HTI-ES, the reverse solute of chloride was almost three times than that of magnesium. The concentration of MgCl2 plays a significant role in rejecting nutrients by the Donnan’s potential and the diffusion constant in low and high concentration of DS, respectively.
基金Supported by the National Natural Science Foundation of Shandong Province
文摘The substituted cyclopentadienyl-magnesium-chloride, obtained by exocyclic addition of 6,6-dialkylfulvene and allyl-magnesium-chloride, reacted with the ketone 3, the product was hydrolyzed and dehydrated to give the 2-(1 ,1-dialkyl-3-butenyl)-6,6-dialkyl-fulvene 5. The structure of 5 was determined by using the 1H NMR spectra of 5 and the adducts of 5 with tetracyanoethylene.
基金Project (2001AA3 31050) supported by the Hi-tech Research and Development Program of China
文摘The corrosion and electrochemical behavior of extruded AZ31D magnesium alloys in NaCl solution were investigated using SEM, XRD and electrochemical method. It is found that AZ31D is susceptive to Cl- ion, and the open circuit potential shifts to more negative values with increasing chloride concentration. Pitting occurs at corrosion potential and corrosion area enlarges with enhanced polarization. Tafel slopes of the cathode branches in different testing solution are almost the same. Cl-concentration affects cathode course slightly. High frequency capacitive loops shrink with the increase of Cl- concentration. Corrosion initiates from the grain boundary and spreads to entire surface with time.
文摘The dehydration and hydration processes of magnesium chloride hydrates were studied by means of frontal chromatography analysis, calorimetry, thermogravimetry and chemical analysis. The mathematical imitation for the adsorption isotherms of MgCl 2·4H 2O and MgCl 2·2H 2O at different temperatures indicates that Boltzmann Function is the ideal equation to describe those adsorption isotherms. Its adsorption heat is -13.06 kJ/mol and -16.11 kJ/mol, respectively. The adsorption equilibrium constants are also given. From the data obtained, there is a thermodynamical possibility to use partial dehydrated magnesium chloride hydrates as an absorbance to clean water vapor contained in bischophite dehydration equipment and let the protection gas HCl recycle in the fluid bed reaction system.
文摘The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re- placement of cement with 25% glass powder slightly decreases the strengthes at ? and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetration resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.
基金the U.S.Nuclear Regulatory Commission through a faculty development grant NRC-HQ-84-15-G-0025 is gratefully acknowledged.J.Ninlachart acknowledges the support by Royal Thai Navy。
文摘Mg–Y–Nd alloy(WE43C or Elektron 43)is a heat treatable magnesium wrought alloy that can be used up to 250 ℃ for aerospace application.This alloy has excellent mechanical properties(UTS:up to 345 MPa at room temperature)and improved corrosion resistance.Electrochemical passivation studies were conducted on this alloy under different heat treatment conditions in 0.1 M NaOH solution with the addition of chloride from 0 to 1000 ppm.The passive potential range typically extended to more than 1.5 VAg/AgCl.The transpassive potential was not dependent on the heat treatment condition of the alloy when the chloride concentration increased up to 500 ppm.However,pitting protection potential varied with the heat treatment condition when the chloride addition was 500 ppm or more.The specimen surface was analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and Raman spectroscopy to understand the passivation behavior of this alloy.The passivated surface of the WE43C specimens indicated that the surface layer consisted of MgO,Mg(OH)_(2),and rare earth oxide phases,and the heat treatment conditions did not significantly affect the composition of the surface film.