This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 - SiO2 castables added with 0, 5%, 10%, 15% and 20% of 474 μm raw bauxite powders containing 72.8% Al2O3,...This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 - SiO2 castables added with 0, 5%, 10%, 15% and 20% of 474 μm raw bauxite powders containing 72.8% Al2O3, respectively. The castables were prepared using white fused alumina as aggregate, powders of white fused alumina, fused mullite,α-Al2O3 ultrafines, 3% CA cement and 5% microsilica as the matrix portion. TG change of the castables was investigated by a thermo-gravimetric analyzer for large size specimen. When the raw bauxite addition is less than 10%, the mass-losing behavior of the castables is similar to that without raw bauxite, tending to reach a constant mass around 400 ℃ , before which the mass-loss is mild and producing little destructive influence. With more than 10% raw bauxite addition, however, the mass-loss increases significantly, and the temperature to reach a constant mass increases to 600 ℃ or higher, unfavorable to structural stabilization. With the raw bauxite addition up to 20% , no negative influence on explosion resistance is found.展开更多
文摘This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 - SiO2 castables added with 0, 5%, 10%, 15% and 20% of 474 μm raw bauxite powders containing 72.8% Al2O3, respectively. The castables were prepared using white fused alumina as aggregate, powders of white fused alumina, fused mullite,α-Al2O3 ultrafines, 3% CA cement and 5% microsilica as the matrix portion. TG change of the castables was investigated by a thermo-gravimetric analyzer for large size specimen. When the raw bauxite addition is less than 10%, the mass-losing behavior of the castables is similar to that without raw bauxite, tending to reach a constant mass around 400 ℃ , before which the mass-loss is mild and producing little destructive influence. With more than 10% raw bauxite addition, however, the mass-loss increases significantly, and the temperature to reach a constant mass increases to 600 ℃ or higher, unfavorable to structural stabilization. With the raw bauxite addition up to 20% , no negative influence on explosion resistance is found.