Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu...Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .展开更多
By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The res...By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The results indicated that the early hydration exothermic rate of C3S and C3A was obviously lowered by P205 and F- in phosphorous slag, the second peak occurring time of C3A was delayed by 0.9 h, the exothermal output of C3S was reduced by 25.04% and the time of accelerating stage was postponed by 0.86 h. The early hydration degree of C3S and C3A was also decreased. Due to the influence of P205 and F, more pores and thinner crystals can be observed in the microstructure of hardened paste and the chance of cracks was reduced.展开更多
Eu-doped silicate complex gel nano-particles was obtained by sol-gel process and characterized with TEM, XRD, PL, etc. The well dispersed particles have particle size about 60 - 70 nm with specific surface area 98.3 m...Eu-doped silicate complex gel nano-particles was obtained by sol-gel process and characterized with TEM, XRD, PL, etc. The well dispersed particles have particle size about 60 - 70 nm with specific surface area 98.3 m^2· g^- 1 The complex gel phosphor gives a broad and strong luminescent emission originating from Eu^2+ ions centered at 425 nm. The emission band shifts to shorter wavelengths with the increase of the ion radius of the alkali earth metals, but the band becomes red-shifted gradually with the increase of the ion radius of the alkali metals(except Li ^+ ). These divalent Eu^2+ ions originate in inequivalent substitution of the alkaline earth ions. The presence of alkaline ions is favorable for the increasing emission intensity of the Eu^2 + and lowering crystalline temperature of the silicate complex gel.展开更多
A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were c...A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were carried out in this study. The CaTb4(SiO4)3O host has been known to crystallize in a hexagonal structure with disordering found in the Ca2+ and Tb3+ cation sites. The phosphors exhibited highly green-emitting band centered at 541 nm under ultraviolet excitation, which corresponds to the 5D4→7F5 transition. The optimal doping concentration of Tb3+ was observed to be at 20 mol%, and the PL intensity was found to decline dramatically when the content of Tb3+ exceeds 20m01% due to concentration quenching. Based on the results, we are currently evaluating the potential application of Ca(Tb,La)4(SiO4)30 as a new green-emitting near-UV LED convertible phosphor.展开更多
The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence propert...The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates(CIE) of the(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600℃ to 800℃. The luminous intensity and internal quantum yield(QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence(PL) and excitation(PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce^3+ in the phosphors was oxidized to Ce^4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.展开更多
The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show ...The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.展开更多
Sol-gel method was utilized to synthesize two different series of red silicate phosphors : MgSiO3 and Mg2SiO4 powder samples doped with Mn2+, conducted the investigation of red long-lasting phosphor: MgSiO3 : Eu2 + , ...Sol-gel method was utilized to synthesize two different series of red silicate phosphors : MgSiO3 and Mg2SiO4 powder samples doped with Mn2+, conducted the investigation of red long-lasting phosphor: MgSiO3 : Eu2 + , Dy3+, Mn2+ . TGA curves of the gel precursor for two series depicted that the loss of residual organic groups and NO3 groups occurs below 450℃. According to the XRD patterns, the major diffraction peaks of the MgSiO3 and Mg2SiO4 series are consistent with a proto-enstatite structure (JCPDS No.11-0273) and a forsterite structure (JCPDS No.85-1364) respectively. With the excitation at 415 nm, the red emission band of Mn2+ ions is peaked at 661 nm for MgSiO3:1%(atom fraction) Mn2+ or 644 nm for MgiSiO4: 1 %(atom fraction) Mn2+ . Compared with Mg2SiO4:Mn2+ samples, MgSiO3:Mn2+ samples exhibit higher luminescence intensity and higher quenching concentration. In addition, the two series co-doped with Eu2+ , Dy3+ , Mn2+ were also prepared. Photo-luminescence and afterglow properties of the two co-doped series were analyzed, which show that MgSiO3: Eu2 + , Dy3+ , Mn2+ is more suitable for a red long-lasting phosphor.展开更多
Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their cryst...Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200~C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2→6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).展开更多
A white long-lasting phosphor Ca2MgSi2O7:Dy3+ was prepared by the solid-state reaction. A strong band peaked at 260 nm was shown in the excitation spectrum of 578 nm emission, which might be attributed to the oxygen d...A white long-lasting phosphor Ca2MgSi2O7:Dy3+ was prepared by the solid-state reaction. A strong band peaked at 260 nm was shown in the excitation spectrum of 578 nm emission, which might be attributed to the oxygen deficiency of the host. After irradiated with 254 nm for 4 min, the white afterglow of the sample could be seen for 3 h. Moreover, the depths and frequency factors of trap centers were calculated from the thermo-luminescence curve of the sample, which indicated that the trap centers corresponding to the 414 K band were more helpful to the long-lasting phosphorescence.展开更多
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction...Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3+ phosphor, the Eu3+ shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.展开更多
The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate miner...The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate minerals, is reported. By employing the proposed approach, we have discovered new phosphors of NaAlSiO4:Eu2+ and BaZrSi3O9:Eu2+, that emit green-yellow (553 nm) and blue-green (480 nm) light, respectively, when excited by radiation of 290 to 420 nm.展开更多
Commercial phosphors always require fewer impurities and higher crystallinity, but sometimes it is difficult or strict to synthesize a pure phase compound. Indeed, if the practical application is not influenced, it is...Commercial phosphors always require fewer impurities and higher crystallinity, but sometimes it is difficult or strict to synthesize a pure phase compound. Indeed, if the practical application is not influenced, it is acceptable to synthesize a kind of phosphors with diphase matrix that have similar structure and photoluminescence properties. In present work, we designed and synthesized a series of(1-x)BaMSiO4·xBa2 MSi2 O7:Eu(M = Zn2+, Mg2+) diphase phosphors which contained two phases BaMSiO4(hexagonal, P63) and Ba2 MSi2 O7(monoclinic, C2/c) by a high temperature solid-state reaction in air condition. The structures and luminescence properties related to the phase transform from BaMSiO4 to Ba2 MSi2 O7 were analyzed carefully. The results show that the self-reduction ability of Eu3+ is not the best in above four compounds, respectively. But it reaches the maximum and gets the green emission under the UV lamp when the matrix is in a proper ratio of two phases, which suggests that the heterostructure between the two crystals(BaMSiO4 and Ba2 MSi2 O7) improves the self-reduction process of the diphase.The possible mechanism of the tunable europium valence and the luminescent properties in(1-x)BaMSiO4·xBa2 MSi2 O7:Eu phosphors were discussed in detail.展开更多
基金Project supported bythe National Natural Science Foundation of China (50125258 ,60377040)
文摘Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .
基金Funded by the National Natural Science Foundation of China (No.50802067)
文摘By means of hydration heat, XRD and SEM, effect of phosphorus and fluorine (P205 and F-) in phosphorous slag on hydration process of tricalcium silicate (C3S) and tricalcium aluminate (C3A) was explored. The results indicated that the early hydration exothermic rate of C3S and C3A was obviously lowered by P205 and F- in phosphorous slag, the second peak occurring time of C3A was delayed by 0.9 h, the exothermal output of C3S was reduced by 25.04% and the time of accelerating stage was postponed by 0.86 h. The early hydration degree of C3S and C3A was also decreased. Due to the influence of P205 and F, more pores and thinner crystals can be observed in the microstructure of hardened paste and the chance of cracks was reduced.
文摘Eu-doped silicate complex gel nano-particles was obtained by sol-gel process and characterized with TEM, XRD, PL, etc. The well dispersed particles have particle size about 60 - 70 nm with specific surface area 98.3 m^2· g^- 1 The complex gel phosphor gives a broad and strong luminescent emission originating from Eu^2+ ions centered at 425 nm. The emission band shifts to shorter wavelengths with the increase of the ion radius of the alkali earth metals, but the band becomes red-shifted gradually with the increase of the ion radius of the alkali metals(except Li ^+ ). These divalent Eu^2+ ions originate in inequivalent substitution of the alkaline earth ions. The presence of alkaline ions is favorable for the increasing emission intensity of the Eu^2 + and lowering crystalline temperature of the silicate complex gel.
文摘A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were carried out in this study. The CaTb4(SiO4)3O host has been known to crystallize in a hexagonal structure with disordering found in the Ca2+ and Tb3+ cation sites. The phosphors exhibited highly green-emitting band centered at 541 nm under ultraviolet excitation, which corresponds to the 5D4→7F5 transition. The optimal doping concentration of Tb3+ was observed to be at 20 mol%, and the PL intensity was found to decline dramatically when the content of Tb3+ exceeds 20m01% due to concentration quenching. Based on the results, we are currently evaluating the potential application of Ca(Tb,La)4(SiO4)30 as a new green-emitting near-UV LED convertible phosphor.
基金Project supported by the Science and Technology Planning Project of Zhejiang Province,China(Grant No.2018C01046)Enterprise-funded Latitudinal Research Projects,China(Grant Nos.J2016-141,J2017-171,J2017-293,and J2017-243)
文摘The color conversion glass ceramics which were made of borosilicate matrix co-doped(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates(CIE) of the(SrBaSm)Si2O2N2:(Eu^3+Ce^3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600℃ to 800℃. The luminous intensity and internal quantum yield(QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence(PL) and excitation(PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce^3+ in the phosphors was oxidized to Ce^4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.
文摘The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.
基金Project is supported by National High Technology Research and Development Program of China (863 Program) (2002 AA 324060)National Natural Science Foundation of China (10404028)
文摘Sol-gel method was utilized to synthesize two different series of red silicate phosphors : MgSiO3 and Mg2SiO4 powder samples doped with Mn2+, conducted the investigation of red long-lasting phosphor: MgSiO3 : Eu2 + , Dy3+, Mn2+ . TGA curves of the gel precursor for two series depicted that the loss of residual organic groups and NO3 groups occurs below 450℃. According to the XRD patterns, the major diffraction peaks of the MgSiO3 and Mg2SiO4 series are consistent with a proto-enstatite structure (JCPDS No.11-0273) and a forsterite structure (JCPDS No.85-1364) respectively. With the excitation at 415 nm, the red emission band of Mn2+ ions is peaked at 661 nm for MgSiO3:1%(atom fraction) Mn2+ or 644 nm for MgiSiO4: 1 %(atom fraction) Mn2+ . Compared with Mg2SiO4:Mn2+ samples, MgSiO3:Mn2+ samples exhibit higher luminescence intensity and higher quenching concentration. In addition, the two series co-doped with Eu2+ , Dy3+ , Mn2+ were also prepared. Photo-luminescence and afterglow properties of the two co-doped series were analyzed, which show that MgSiO3: Eu2 + , Dy3+ , Mn2+ is more suitable for a red long-lasting phosphor.
基金finacially supported by the National Natural Science Foundation of China (Nos. 11004154 and 10874160)the Scienceand Technology Foundation of Guangdong Province, China (No. 2007173)
文摘Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200~C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2→6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).
基金Project supported by the Young Scientists' Innovation Foundation of Fujian Province (2007F3027)the Natural Science Foundation of Fujian Province of China (A0510014)+2 种基金the Science Foundation of the Department of Science and Technology of Fujian Province of China (2006F5025)the Science Foundation of the Educational Department of Fujian Province of China (JB08063)the Special Science Foundation for Key Research of Fujian Province (2007HJ0004-2)
文摘A white long-lasting phosphor Ca2MgSi2O7:Dy3+ was prepared by the solid-state reaction. A strong band peaked at 260 nm was shown in the excitation spectrum of 578 nm emission, which might be attributed to the oxygen deficiency of the host. After irradiated with 254 nm for 4 min, the white afterglow of the sample could be seen for 3 h. Moreover, the depths and frequency factors of trap centers were calculated from the thermo-luminescence curve of the sample, which indicated that the trap centers corresponding to the 414 K band were more helpful to the long-lasting phosphorescence.
基金Project supported by the "Bairen Jihua" of Chinese Academy of Sciences, the MOST of China (2003CB314707) and the National Natural Science Foundation of China (20271048 )
文摘Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3+ phosphor, the Eu3+ shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.
文摘The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate minerals, is reported. By employing the proposed approach, we have discovered new phosphors of NaAlSiO4:Eu2+ and BaZrSi3O9:Eu2+, that emit green-yellow (553 nm) and blue-green (480 nm) light, respectively, when excited by radiation of 290 to 420 nm.
基金Project supported by National Key Research and Development Program(2016YFB0302403)the National Natural Science Foundation of China(21571059)+1 种基金Hunan Provincial Natural Science Foundation of China(2015JJ2100)Hunan Provincial Innovation Foundation For Postgraduate(CX2017B180)
文摘Commercial phosphors always require fewer impurities and higher crystallinity, but sometimes it is difficult or strict to synthesize a pure phase compound. Indeed, if the practical application is not influenced, it is acceptable to synthesize a kind of phosphors with diphase matrix that have similar structure and photoluminescence properties. In present work, we designed and synthesized a series of(1-x)BaMSiO4·xBa2 MSi2 O7:Eu(M = Zn2+, Mg2+) diphase phosphors which contained two phases BaMSiO4(hexagonal, P63) and Ba2 MSi2 O7(monoclinic, C2/c) by a high temperature solid-state reaction in air condition. The structures and luminescence properties related to the phase transform from BaMSiO4 to Ba2 MSi2 O7 were analyzed carefully. The results show that the self-reduction ability of Eu3+ is not the best in above four compounds, respectively. But it reaches the maximum and gets the green emission under the UV lamp when the matrix is in a proper ratio of two phases, which suggests that the heterostructure between the two crystals(BaMSiO4 and Ba2 MSi2 O7) improves the self-reduction process of the diphase.The possible mechanism of the tunable europium valence and the luminescent properties in(1-x)BaMSiO4·xBa2 MSi2 O7:Eu phosphors were discussed in detail.