期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and Properties of a New Type of Poly(butylene-terephthalate)with Layered Silicate Nanocomposites 被引量:1
1
作者 柯扬船 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期701-708,共8页
In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB... In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested. 展开更多
关键词 poly(butylene-terephthalate)-layered silicate of clay nanocomposites crystallization nucleation thermal properties phase separation
下载PDF
From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water 被引量:2
2
作者 Wenbo Wang Guangyan Tian +4 位作者 Li Zong Yanmin Zhou Yuru Kang Qin Wang Aiqin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期31-43,共13页
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectit... A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. 展开更多
关键词 Illite/smectite clay Hybrid silicate adsorbent Chlortetracycline Removal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部