In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB...In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.展开更多
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectit...A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.展开更多
基金Supported by China National Petroleum Corporation Innovation Foundation(No.J02060)and Subsidized by Special Funds for Major State Basic Research Projects(No.G1999064800)
文摘In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.
基金the National Natural Science Foundation of China(Nos.51403221 and 21377135)the Jiangsu Provincial Joint Innovation and Research Funding of Enterprises,Colleges and Institutes(No.BY2015056-01)+1 种基金the Huai'an Cooperative Research Project of the Enterprises,Colleges and Institutes(No.HAC2015005)the Youth Innovation Promotion Association CAS(No.2016370)for financial support of this research
文摘A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.