期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
1
作者 Jing-Fen Zhao Hui Wang +3 位作者 Zai-Fa Yang Hui Gao Hong-Xia Bu Xiao-Juan Yuan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期535-539,共5页
Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenate... Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied.The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping.Remarkably,by tuning the edge hydrogenation,it is found that the spin filter efficiency can be varied from 30%to 58%.Moreover,it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction.These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications. 展开更多
关键词 silicene nanoribbons spin filtering effect negative differential resistance
下载PDF
Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
2
作者 Jianfei Zou and Jing Kang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期410-416,共7页
Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field ... Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields. 展开更多
关键词 silicene nanoribbon edge state optical conductivity exchange field
下载PDF
Characteristics of Li diffusion on silicene and zigzag nanoribbon
3
作者 郭艳华 曹觉先 徐波 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期742-745,共4页
We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV... We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from0. 1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery. 展开更多
关键词 Li diffusion silicene sheet silicene nanoribbons density functional theory
下载PDF
Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
4
作者 Lin Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期387-393,共7页
We propose two possible spin valves based on a zigzag silicene nanoribbon(ZSR) ferromagnetic junction. By using the Landauer–B u¨tikker formula, we calculate the spin-resolved conductance spectrum of the syste... We propose two possible spin valves based on a zigzag silicene nanoribbon(ZSR) ferromagnetic junction. By using the Landauer–B u¨tikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin–orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene. 展开更多
关键词 zigzag silicene nanoribbon spin valve spin-orbit coupling CONDUCTANCE
下载PDF
Quantum transport through a Z-shaped silicene nanoribbon
5
作者 A Ahmadi Fouladi 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期415-419,共5页
In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biit... In this work,the electronic transport properties of Z-shaped silicene nanoribbon(ZsSiNR) structure are investigated.The calculations are based on the tight-binding model and Green's function method in Landauer-Biittiker formalism,in which the electronic density of states(DOS),transmission probability,and current-voltage characteristics of the system are calculated,numerically.It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system.It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction(SOI) strength.Also,the semiconductor to metallic transition occurs by increasing the SOI strength.The present theoretical results may be useful to design silicene-based devices in nanoelectronics. 展开更多
关键词 Z-shaped silicene nanoribbon electronic transport Green's function method spin–orbit interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部