期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Novel KCl/Silicate Drilling Fluids for Alleviating Problems in Troublesome Shale Formations in Sudan 被引量:2
1
作者 Guo Jiankang Yan Jienian +3 位作者 Fan Weiwang Zhang Hongjing Wang Qunli Yu Zhihai 《Petroleum Science》 SCIE CAS CSCD 2005年第4期34-40,共7页
For several decades, wells drilled in Block 6, Sudan, have experienced serious hole-instability problems related to drilling fluids due to the highly reactive and dispersive shales that exist in the Aradeiba and Abu G... For several decades, wells drilled in Block 6, Sudan, have experienced serious hole-instability problems related to drilling fluids due to the highly reactive and dispersive shales that exist in the Aradeiba and Abu Gabra formations. These problems included washout hole sections combined with tight holes, as well as serious sloughing. Frequent wiper trips were required and logging of the wells was not usually successful. Previously, several conventional inhibitive water-based drilling fluids such as KCl/polymer, KCl/lime/polymer and KCl/PHPA (partially hydrolyzed polyacrylamide) have been used in this area, but with only marginal improvements in hole stability and drilling performance. Recently, a newly formulated KCl/sodium silicate system, which is characterized by the good rheological properties and filtration control, was developed and used for providing the necessary inhibitive character. The first trial well was drilled with this kind of drilling fluid in Block 6, Sudan, and the following benefits were observed: (1) Excellent integrity exhibited by drilled cuttings for shale formations; (2) Stable borehole kept with lower mud weight; (3) Reduced wiper trips; and (4) In-gauge borehole shown from caliper logs. Later on, five more wells were drilled with the KCl/sodium silicate system in this area. It was found that the KCl/sodium silicate system can fully meet the demands of drilling operations in this area. Case studies are presented in this paper in terms of wiper trips, inhibitive character of cuttings, hole conditions and mud weight. 展开更多
关键词 KCl/silicate drilling fluids well bore stability inhibitive character rheological property
下载PDF
Copper partitioning between granitic silicate melt and coexisting aqueous fluid at 850°C and 100 MPa 被引量:3
2
作者 Shuilong Wang Hui Li +3 位作者 Linbo Shang Xianwu Bi Xinsong Wang Wenlin Fan 《Acta Geochimica》 EI CAS CSCD 2016年第4期381-390,共10页
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered... Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid. 展开更多
关键词 CU Experimental study Partition coefficient Granitic silicate melt - Aqueous fluid
下载PDF
Soil microbial response to waste potassium silicate drilling fluid 被引量:3
3
作者 Linjun Yao M.Anne Naeth Allen Jobson 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期189-198,共10页
Potassium silicate drilling fluids (PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of s... Potassium silicate drilling fluids (PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of soil bacteria and fungi. Soils from three representative locations for PSDF application in Alberta, Canada, with clay loam, loam and sand textures were studied with applications of unused, used once and used twice PSDF. For all three soils, applying ≥40 m^3/ha of used PSDF significantly affected the existing soil microbial flora. No microbiota was detected in unused PSDF without soil. Adding used PSDF to soil significantly increased total fungal and aerobic bacterial colony forming units in dilution plate counts, and anaerobic denitrifying bacteria numbers in serial growth experiments. Used PSDF altered bacterial and fungal colony forming unit ratios of all three soils. 展开更多
关键词 Drilling waste Potassium silicate drilling fluid Soil Microbiota
原文传递
Electrical conductivity of hydrous silicate melts and aqueous fluids: Measurement and applications 被引量:5
4
作者 GUO Xuan CHEN Qi NI HuaiWei 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期889-900,共12页
The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth's deep interior. Electrical conductivity of hydrous sil... The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth's deep interior. Electrical conductivity of hydrous silicate melts and aqueous fluids is sensitive to composition, temperature, and pressure, making it useful for understanding partial melting and fluid activity at great depths. This study presents a review on the experimental studies of electrical conductivity of silicate melts and aqueous fluids, and introduces some important applications of experimental results. For silicate melts, electrical conductivity increases with increasing temperature but decreases with pressure. With a similar Na^+ concentration, along the calc-alkaline series electrical conductivity generally increases from basaltic to rhyolitic melt, accompanied by a decreasing activation enthalpy. Electrical conductivity of silicate melts is strongly enhanced with the incorporation of water due to promoted cation mobility. For aqueous fluids, research is focused on dilute electrolyte solutions. Electrical conductivity typically first increases and then decreases with increasing temperature, and increases with pressure before approaching a plateau value. The dissociation constant of electrolyte can be derived from conductivity data. To develop generally applicable quantitative models of electrical conductivity of melt/fluid addressing the dependences on temperature, pressure, and composition, it requires more electrical conductivity measurements of representative systems to be implemented in an extensive P-T range using up-to-date methods. 展开更多
关键词 Silicate melts Aqueous fluids Electrical conductivity Laboratory measurement Partial melting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部