A double-sided silicon strip detector(DSSD)with active area of 48 mm x 48 mm and thickness of300μm has been developed. Each side of DSSD consists of48 strips, each with width of 0.9 mm and inter-strip separation of 0...A double-sided silicon strip detector(DSSD)with active area of 48 mm x 48 mm and thickness of300μm has been developed. Each side of DSSD consists of48 strips, each with width of 0.9 mm and inter-strip separation of 0.1 mm. Electrical properties and detection performances including full depletion bias voltage, reverse leakage current, rise time, energy resolution and cross talk have been studied. At a bias of 80 V, leakage current in each strip is less than 15 nA, and rise time for alpha particle at 5157 keV is approximately 15 ns on both sides.Good energy resolutions have been achieved with0.65-0.80% for the junction strips and 0.85-1.00% for the ohmic strips. The cross talk is found to be negligible on both sides. The overall good performance of DSSD indicates its readiness for various nuclear physics experiments.展开更多
A readout electronics has been developed for the silicon strip array detector system of HIRFL-CSR-ETF.It consists of 48 front end electronics(FEE)boards,12 PXI-DAQ boards and one trigger board.It can implement energy ...A readout electronics has been developed for the silicon strip array detector system of HIRFL-CSR-ETF.It consists of 48 front end electronics(FEE)boards,12 PXI-DAQ boards and one trigger board.It can implement energy and time measurements of 4608 channels.Each FEE board is based on 6 ASICs(ATHED),which implements energy and time measurements of 96 channels.The PXI-DAQ board meets requirements of high-speed counting and amount of readout channels and can process signals of 4 FEEs.The trigger board is developed to select the valid events.The energy linearity of the readout electronics is better than 0.3%in the dynamic range of 0.1-0.7V.In the test with a standard triple alpha source,the energy resolution was 1.8%at 5.48 MeV.This readout electronics enables the silicon strip array system to identify particles of A<14.展开更多
An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanica...An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanical vibration energy.A harmonic silicone rubber triboelectric nanogenerator(HSR-TENG)is developed focusing on ubiquitous constant working frequency machinery.The unique design of the strip serving as a flexible resonator realizes both soft contact and high and broadband output.The significant factors influencing the 1^(st)-order vibration mode of the strip are developed for realizing the harmonic frequency adaptation to external vibration.The surface treatment of the strip improves the output performance of HSR-TENG by 49.1%as well as eliminates the adhesion effect.The HSR-TENG is able to achieve a voltage output bandwidth of 19 Hz under a vibration strength of 3.0,showing its broadband capability.The peak power density of 153.9 W/m^(3)is achieved and 12×0.5 W light-emitting diodes(LEDs)are successfully illuminated by the HSR-TENG.It can continuously power a temperature sensor by harvesting the actual compressor vibration energy.In brief,the HSR-TENG provides a promising way for constant frequency vibration energy harvesting,so as to achieve in-situ power supply for the WSNs in the vicinity.展开更多
The grain oriented silicon strip was rolled by cross shear rolling(CSR)and then annealed to manufacture non-oriented thin silicon strip of high quality.The recrystallization of rolled grain-oriented silicon steel into...The grain oriented silicon strip was rolled by cross shear rolling(CSR)and then annealed to manufacture non-oriented thin silicon strip of high quality.The recrystallization of rolled grain-oriented silicon steel into non-oriented silicon steel was studied.For this purpose,CSR is better than conventional rolling,and the higher the mismatched speed rate is,the better the properties of the non-oriented thin silicon strip are.The optimum annealing schedule is heating at 1 000 ℃for 1hin pure hydrogen atmosphere added with H2 S of 0.001 0 %.展开更多
It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This...It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.展开更多
This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and ...This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and future development trend was explored. In addition, a brief introduction was provided to technical progress of high silicon thingauge strips with a Si content of 6.5%.展开更多
Purpose Silicon strip detectors are widely applied in space-based cosmic ray experiments and most of the silicon strip detectors deploy an analytical method for its digitization.However,the analytical method simplifie...Purpose Silicon strip detectors are widely applied in space-based cosmic ray experiments and most of the silicon strip detectors deploy an analytical method for its digitization.However,the analytical method simplifies the physical process of propagation of electrons/holes generated inside the silicon detector by particles that pass through the detector.In order to simulate silicon strip detectors with different configurations comprehensively,the Allpix^(2),an open-source software,is used to study those processes.Methods When particle passes through the silicon detector,energy is deposited based on Geant4 simulation,and electron-hole pairs are created due to the deposited energy.The Allpix^(2)simulation method and the analytical method are both used to calculate or simulate the diffusion and drift processes that electron-hole pairs propagate inside the silicon detector under internal electric field,and the number of electrons/holes accumulated at implanted strips are counted.Results and conclusion The number of electrons/holes accumulated along the implanted strips are compared between the Allpix^(2)simulation method and analytical method for different incident angles and different incident positions,they are found to be in good agreement for proton particles,while there are discrepancies for carbon and silicon particles.The Allpix^(2)software may be an important tool for the study of response of silicon strip detectors in space.The charge resolution of single implanted strip predicted by Allpix^(2)simulation method is about 4.7%for proton,3.8%for carbon and 1.6%for silicon particles for an incident angle of 45◦.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1432246,U1632136,U1432127,11375268,11635015,and 11475263)the National Basic Research Program of China(No.2013CB834404)
文摘A double-sided silicon strip detector(DSSD)with active area of 48 mm x 48 mm and thickness of300μm has been developed. Each side of DSSD consists of48 strips, each with width of 0.9 mm and inter-strip separation of 0.1 mm. Electrical properties and detection performances including full depletion bias voltage, reverse leakage current, rise time, energy resolution and cross talk have been studied. At a bias of 80 V, leakage current in each strip is less than 15 nA, and rise time for alpha particle at 5157 keV is approximately 15 ns on both sides.Good energy resolutions have been achieved with0.65-0.80% for the junction strips and 0.85-1.00% for the ohmic strips. The cross talk is found to be negligible on both sides. The overall good performance of DSSD indicates its readiness for various nuclear physics experiments.
基金Supported by the National Natural Science Foundation of China(Nos.11005135 and 11079045)the Important Direction Project of the CAS Knowledge Innovation Program(No.KJCX2-YW-N27)the Foundation of director of Institute Modern Physics,CAS(No.Y207170SZ0)
文摘A readout electronics has been developed for the silicon strip array detector system of HIRFL-CSR-ETF.It consists of 48 front end electronics(FEE)boards,12 PXI-DAQ boards and one trigger board.It can implement energy and time measurements of 4608 channels.Each FEE board is based on 6 ASICs(ATHED),which implements energy and time measurements of 96 channels.The PXI-DAQ board meets requirements of high-speed counting and amount of readout channels and can process signals of 4 FEEs.The trigger board is developed to select the valid events.The energy linearity of the readout electronics is better than 0.3%in the dynamic range of 0.1-0.7V.In the test with a standard triple alpha source,the energy resolution was 1.8%at 5.48 MeV.This readout electronics enables the silicon strip array system to identify particles of A<14.
基金supported by the National Natural Science Foundation of China(Nos.52101345,52101400)the Scientific Research Fund of Liaoning Provincial Education Department(No.LJKZ0055)+1 种基金the Dalian Outstanding Young Scientific and Technological Talents Project(No.2021RJ11)the Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment(No.3132023354).
文摘An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanical vibration energy.A harmonic silicone rubber triboelectric nanogenerator(HSR-TENG)is developed focusing on ubiquitous constant working frequency machinery.The unique design of the strip serving as a flexible resonator realizes both soft contact and high and broadband output.The significant factors influencing the 1^(st)-order vibration mode of the strip are developed for realizing the harmonic frequency adaptation to external vibration.The surface treatment of the strip improves the output performance of HSR-TENG by 49.1%as well as eliminates the adhesion effect.The HSR-TENG is able to achieve a voltage output bandwidth of 19 Hz under a vibration strength of 3.0,showing its broadband capability.The peak power density of 153.9 W/m^(3)is achieved and 12×0.5 W light-emitting diodes(LEDs)are successfully illuminated by the HSR-TENG.It can continuously power a temperature sensor by harvesting the actual compressor vibration energy.In brief,the HSR-TENG provides a promising way for constant frequency vibration energy harvesting,so as to achieve in-situ power supply for the WSNs in the vicinity.
文摘The grain oriented silicon strip was rolled by cross shear rolling(CSR)and then annealed to manufacture non-oriented thin silicon strip of high quality.The recrystallization of rolled grain-oriented silicon steel into non-oriented silicon steel was studied.For this purpose,CSR is better than conventional rolling,and the higher the mismatched speed rate is,the better the properties of the non-oriented thin silicon strip are.The optimum annealing schedule is heating at 1 000 ℃for 1hin pure hydrogen atmosphere added with H2 S of 0.001 0 %.
文摘It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.
文摘This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and future development trend was explored. In addition, a brief introduction was provided to technical progress of high silicon thingauge strips with a Si content of 6.5%.
基金This work is supported by National Key R&D program of China(2021YFA0718403,2018YFA0404201)the Science and Technology Department of Sichuan Province(Grant number 2021YFSY0031,2020YFSY0016)the NationalNatural Science Foundation of China(Grant number 12205244,12147208).
文摘Purpose Silicon strip detectors are widely applied in space-based cosmic ray experiments and most of the silicon strip detectors deploy an analytical method for its digitization.However,the analytical method simplifies the physical process of propagation of electrons/holes generated inside the silicon detector by particles that pass through the detector.In order to simulate silicon strip detectors with different configurations comprehensively,the Allpix^(2),an open-source software,is used to study those processes.Methods When particle passes through the silicon detector,energy is deposited based on Geant4 simulation,and electron-hole pairs are created due to the deposited energy.The Allpix^(2)simulation method and the analytical method are both used to calculate or simulate the diffusion and drift processes that electron-hole pairs propagate inside the silicon detector under internal electric field,and the number of electrons/holes accumulated at implanted strips are counted.Results and conclusion The number of electrons/holes accumulated along the implanted strips are compared between the Allpix^(2)simulation method and analytical method for different incident angles and different incident positions,they are found to be in good agreement for proton particles,while there are discrepancies for carbon and silicon particles.The Allpix^(2)software may be an important tool for the study of response of silicon strip detectors in space.The charge resolution of single implanted strip predicted by Allpix^(2)simulation method is about 4.7%for proton,3.8%for carbon and 1.6%for silicon particles for an incident angle of 45◦.