Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulf...Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.展开更多
A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale sim...A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation.展开更多
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an ine...The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.展开更多
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co...In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.展开更多
Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the...Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al_2O_(3sf) on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al_2O_(3sf), characterized by the ratio of Al_2O_(3sf) to SiC_p, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al_2O_(3sf) to SiC_p was increased from 0 to 1, the rate of wear mass loss(K_m) and coefficients of friction(COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K_m increased rapidly and the wear mechanism became adhesive wear.展开更多
Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bondi...Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.展开更多
采用复合电铸工艺制备碳化硅颗粒 (Si Cp)增强铜基复合材料 ,重点研究了添加剂、颗粒粒径、电流密度、施镀温度、搅拌强度等工艺参数对 Cu/ Si Cp 复合材料中 Si Cp 含量的影响 .结果表明 ,优化各工艺参数可有效促进 Si Cp 与铜离子的...采用复合电铸工艺制备碳化硅颗粒 (Si Cp)增强铜基复合材料 ,重点研究了添加剂、颗粒粒径、电流密度、施镀温度、搅拌强度等工艺参数对 Cu/ Si Cp 复合材料中 Si Cp 含量的影响 .结果表明 ,优化各工艺参数可有效促进 Si Cp 与铜离子的共沉积 ,提高复合材料中增强固体颗粒的含量 .在此基础上研究开发了一种可有效促进 Si C颗粒与铜共沉积的混合添加剂 ,可获得 Si Cp 含量较高的Cu/ Si Cp复合材料 .展开更多
基金supported by Universiti Sains Malaysia under the Research University Grant (RU. Grant No.1001/PKIMIA/811006)
文摘Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.
基金supported by the National Science Foundation of China for Young Scientists (Grant No.51505331)
文摘A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation.
文摘The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.
文摘In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)
文摘Aluminum(Al) 2024 matrix composites reinforced with alumina short fibers(Al_2O_(3sf)) and silicon carbide particles(SiC_p) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al_2O_(3sf) on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al_2O_(3sf), characterized by the ratio of Al_2O_(3sf) to SiC_p, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al_2O_(3sf) to SiC_p was increased from 0 to 1, the rate of wear mass loss(K_m) and coefficients of friction(COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K_m increased rapidly and the wear mechanism became adhesive wear.
基金supported by authors thank the Postdoctoral Science Foundation of China (No. 20090451393)the Aviation Science Foundation of China (No. 2009ZF53062)
文摘Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.
文摘采用复合电铸工艺制备碳化硅颗粒 (Si Cp)增强铜基复合材料 ,重点研究了添加剂、颗粒粒径、电流密度、施镀温度、搅拌强度等工艺参数对 Cu/ Si Cp 复合材料中 Si Cp 含量的影响 .结果表明 ,优化各工艺参数可有效促进 Si Cp 与铜离子的共沉积 ,提高复合材料中增强固体颗粒的含量 .在此基础上研究开发了一种可有效促进 Si C颗粒与铜共沉积的混合添加剂 ,可获得 Si Cp 含量较高的Cu/ Si Cp复合材料 .