The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge ...The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.展开更多
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ...We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.展开更多
Precursor concentration dependences of growth rate, doping concentration and surface morphology have been investigated in the epitaxial growth of 4H-SiC(0001) epilayers with horizontal hot-wall CVD system using vari...Precursor concentration dependences of growth rate, doping concentration and surface morphology have been investigated in the epitaxial growth of 4H-SiC(0001) epilayers with horizontal hot-wall CVD system using various precursor concentrations under constant C/Si ratio. Form the experimental data it is found that silicon cluster which is formed through gas phase nucleation plays an important role in controlling the doping concentration and epitaxial growth rate of the silicon carbide. It was observed that the concentration of silicon clusters cannot reach the equilibrium value in the process by using a low Sill4 concentration, and this phenomenon has not been reported by others.展开更多
Ⅰ. INTRODUCTIONSmall atomic dusters ranging from two to a few hundred atoms per cluster, also referred to as microclusters, attract great interest of physists, chemists and material scientists since 1980’s because o...Ⅰ. INTRODUCTIONSmall atomic dusters ranging from two to a few hundred atoms per cluster, also referred to as microclusters, attract great interest of physists, chemists and material scientists since 1980’s because of their peculiar behaviors and potential for industrial applications. The coulombic explosion is known as one of the remarkable properties inherent in microdusters. Experiments have shown that some positively charged dusters(cluster cations), M<sub>n</sub><sup>m+</sup>展开更多
In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic...In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of those found in corresponding bulk materials. Silicon agglomerates found in Silicon Rich Oxide (SRO) films have optical properties, which have reported as depended directly on nano-crystal size. Furthermore, the room temperature photoluminescence (PL) of Silicon Rich Oxides (SRO) has repeatedly generated a huge interest due to their possible applications in optoelectronic devices. However, a plausible emission mechanism has not yet widespread acceptance of the scientific community. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6 - 31G* to calculate the optical and electronic properties of small (six to ten silicon atoms) and medium size clusters of silicon (constituted of eleven to fourteen silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism experimentally found in thin SRO films.展开更多
Microclusters from different structures of silicon and carbon are studied by SIMS under UHV conditions in the mass range below M=200. The sputtered mass spectra of ions Sin+, Cn+ and Cn were obtained from the 10 keV O...Microclusters from different structures of silicon and carbon are studied by SIMS under UHV conditions in the mass range below M=200. The sputtered mass spectra of ions Sin+, Cn+ and Cn were obtained from the 10 keV O2+ primary beam bombardment. Comparisons of each spectrum in each group have shown the strong structure effects on the cluster patterns. A brief discussion on the results has been given.展开更多
Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The groun...Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The ground-state (G-S) isomers of the clusters have been defined. The C, chains of the G-S isomers display polyacetylene-like structures. The even-n cations are more stable than the odd-n ones. Such a trend of even/odd alternation has been elaborated based on concepts of the bond character, atomic charge, incremental binding energy, ionization potential, proton affinity and fragmentation energies of the systems. The findings accord with the relative intensities of HC,,Si2+ species recorded in the related mass spectrometric experiments.展开更多
Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structur...Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.展开更多
We investigate the structures and the melting temperature of the Si6 cluster by using the first-principles pseudopotential method in real space and Langevin molecular dynamics. It is shown that the ground structure of...We investigate the structures and the melting temperature of the Si6 cluster by using the first-principles pseudopotential method in real space and Langevin molecular dynamics. It is shown that the ground structure of the Si6 cluster is a square bipyramid, and the corresponding melting temperature is about 1923 K. In the heating procedure, the structures of the Si6 cluster change from high symmetry structures containing 5-8 bonds, via prolate structures containing 3-4 bonds, to oblate structures containing 1-2 bonds.展开更多
Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clus...Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.展开更多
This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After t...This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After the suitable annealing, these samples are characterized by using the photoluminescence technique at different recorded temperatures. Plentiful emission peaks are observed in these implanted silicon-on-insulator samples, including the unwonted intense P~ band which exhibits a great potential in the optoelectronic application. These results indicate that severe transformation of the interstitial clusters can be manipulated by the implanting dose at suitable annealing temperatures. The high critical temperatures for the photoluminescence intensity growth of the two signatures are well discussed based on the thermal ionization model of free exciton.展开更多
The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing p...The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing process in a tube furnace.With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density(J0e) and a poorer crystallographic quality. Consistent with this observation, V oc, J sc, and the efficiency of the all-implanted p^+–n–n^+solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5×10^14cm^-2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I–V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers.展开更多
Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground st...Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground state with the total spin S = 4. The charges on the two Fe atoms are quite different as well as the charge distribution on the surrounding Si atoms. Nevertheless the total dipole moment of the cluster is a monotonically decreasing function of the excitation energy and it reaches practically zero value in the first singlet state in which the cluster represents a new version of a quibit system.展开更多
The electromagnetic interaction between Ag nanoparticles on the top of the Si substrate and the incident light has been studied by numerical simulations. It is found that the presence of dielectric layers with differe...The electromagnetic interaction between Ag nanoparticles on the top of the Si substrate and the incident light has been studied by numerical simulations. It is found that the presence of dielectric layers with different thicknesses leads to the varied resonance wavelength and scattering cross section and consequently the shifted photocurrent response for all wavelengths. These different behaviours are determined by whether the dielectric layer is beyond the domain where the elcetric field of metallic plasmons takes effect, combined with the effect of geometrical optics. It is revealed that for particles of a certain size, an appropriate dielectric thickness is desirable to achieve the best absorption. For a certain thickness of spacer, an appropriate granular size is also desirable. These observations have substantial applications for the optimization of surface plasmon enhanced silicon solar cells.展开更多
The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several t...The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several trends. For any stoichiometric clusters, the lowest energy isomers with an alteration of N and Si atoms are favourable in energy if the numbers of Si and N atoms are large enough to form ... Si N-Si-N... alternative chains. The bond lengths of single Si-N bonds are very close to the corresponding values of the bulk and other SiN clusters. The geometries for N-rich and Si4N4 clusters are planar structures, but three-dimensional structures are favourable in energy for Si-rich clusters. With the increase of m, the isotropic polarizability and average polarizability increase, the total binding energies generally decrease, the HOMO-LUMO gap and vertical ionization potential oscillate with increasing number of valence electrons, and their values with even valence electrons are larger than those with odd valence electrons. The atomic charges, IR and Raman properties are also reported.展开更多
The possibility of building of clusters of impurity atoms of Ni in silicon and controlling their parameters is currently investigated in the present research article. Our group develops a special technique for doping,...The possibility of building of clusters of impurity atoms of Ni in silicon and controlling their parameters is currently investigated in the present research article. Our group develops a special technique for doping, the so-called “low-temperature doping” of semiconductors. This method of doping is based upon the diffusion process which is carried out in stages by gradually increasing temperature ranging from room temperature to the diffusion temperature.展开更多
基金Supported by the National Natural Science Foundation of China(21263010)Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT-A1603)Inner Mongolia Natural Science Foundation(2015MS0216)
文摘The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200the National Natural Science Foundation of China under Grant Nos U1732273,U1732159,91421109,91622115,11522432,11574217 and 61774133the Natural Science Foundation of Jiangsu Province under Grant No BK20160659
文摘We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
文摘Precursor concentration dependences of growth rate, doping concentration and surface morphology have been investigated in the epitaxial growth of 4H-SiC(0001) epilayers with horizontal hot-wall CVD system using various precursor concentrations under constant C/Si ratio. Form the experimental data it is found that silicon cluster which is formed through gas phase nucleation plays an important role in controlling the doping concentration and epitaxial growth rate of the silicon carbide. It was observed that the concentration of silicon clusters cannot reach the equilibrium value in the process by using a low Sill4 concentration, and this phenomenon has not been reported by others.
文摘Ⅰ. INTRODUCTIONSmall atomic dusters ranging from two to a few hundred atoms per cluster, also referred to as microclusters, attract great interest of physists, chemists and material scientists since 1980’s because of their peculiar behaviors and potential for industrial applications. The coulombic explosion is known as one of the remarkable properties inherent in microdusters. Experiments have shown that some positively charged dusters(cluster cations), M<sub>n</sub><sup>m+</sup>
文摘In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of those found in corresponding bulk materials. Silicon agglomerates found in Silicon Rich Oxide (SRO) films have optical properties, which have reported as depended directly on nano-crystal size. Furthermore, the room temperature photoluminescence (PL) of Silicon Rich Oxides (SRO) has repeatedly generated a huge interest due to their possible applications in optoelectronic devices. However, a plausible emission mechanism has not yet widespread acceptance of the scientific community. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6 - 31G* to calculate the optical and electronic properties of small (six to ten silicon atoms) and medium size clusters of silicon (constituted of eleven to fourteen silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism experimentally found in thin SRO films.
文摘Microclusters from different structures of silicon and carbon are studied by SIMS under UHV conditions in the mass range below M=200. The sputtered mass spectra of ions Sin+, Cn+ and Cn were obtained from the 10 keV O2+ primary beam bombardment. Comparisons of each spectrum in each group have shown the strong structure effects on the cluster patterns. A brief discussion on the results has been given.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(RFDP,20123514120003)Foundations of Fuzhou University(0041-600566 and 2012-XQ-12)
文摘Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The ground-state (G-S) isomers of the clusters have been defined. The C, chains of the G-S isomers display polyacetylene-like structures. The even-n cations are more stable than the odd-n ones. Such a trend of even/odd alternation has been elaborated based on concepts of the bond character, atomic charge, incremental binding energy, ionization potential, proton affinity and fragmentation energies of the systems. The findings accord with the relative intensities of HC,,Si2+ species recorded in the related mass spectrometric experiments.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-01)the National Natural Science Foundation of China (Grant Nos. 20853001 and 10874007)
文摘Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSin (n = 2 - 6) clusters and their neutrals. We find that the structures of ScSin^- are similar to those of Sin+1^-. The most stable isomers of ScSin^- cluster anions and their neutrals are similar for n=-2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandiumsilicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi4,6^- can be explained by the existence of less stable isomers. A comparison between ScSin and VSin clusters shows the effects of metal size and electron configuration on cluster geometries.
基金Supported by the National Natural Science Foundation of China under Grant No 10274055, the Natural Science Foundation of Sichuan Education Bureau under Grant No 2004A181, and the Research Fund for the Doctoral Program of Yibin University under Grant No 2005B01.
文摘We investigate the structures and the melting temperature of the Si6 cluster by using the first-principles pseudopotential method in real space and Langevin molecular dynamics. It is shown that the ground structure of the Si6 cluster is a square bipyramid, and the corresponding melting temperature is about 1923 K. In the heating procedure, the structures of the Si6 cluster change from high symmetry structures containing 5-8 bonds, via prolate structures containing 3-4 bonds, to oblate structures containing 1-2 bonds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1804121 and 11304167)
文摘Cluster science as a bridge linking atomic molecular physics and condensed matter inspired the nanomaterials development in the past decades, ranging from the single-atom catalysis to ligand-protected noble metal clusters. The corresponding studies not only have been restricted to the search for the geometrical structures of clusters, but also have promoted the development of cluster-assembled materials as the building blocks. The CALYPSO cluster prediction method combined with other computational techniques have significantly stimulated the development of the cluster-based nanomaterials. In this review, we will summarize some good cases of cluster structure by CALYPSO method, which have also been successfully identified by the photoelectron spectra experiments. Beginning with the alkali-metal clusters, which serve as benchmarks, a series of studies are performed on the size-dependent elemental clusters which possess relatively high stability and interesting chemical physical properties. Special attentions are paid to the boron-based clusters because of their promising applications. The NbSi12 and BeB16 clusters, for example, are two classic representatives of the silicon-and boron-based clusters, which can be viewed as building blocks of nanotubes and borophene. This review offers a detailed description of the structural evolutions and electronic properties of medium-sized pure and doped clusters, which will advance fundamental knowledge of cluster-based nanomaterials and provide valuable information for further theoretical and experimental studies.
基金supported by the National Natural Science Foundation of China (Grant No. 10964016)the Key Project of the Chinese Ministry of Education (Grant No. 210207)the Natural Science Foundation of Yunnan University (Grant No. 2009E27Q)
文摘This paper reports that the Si+ self-ion-implantation are conducted on the silicon-on-insulator wafers with the 2SSi+ doses of 7 ×1012, 1 × 1013, 4 × 1013, and 3× 1014 cm-2, respectively. After the suitable annealing, these samples are characterized by using the photoluminescence technique at different recorded temperatures. Plentiful emission peaks are observed in these implanted silicon-on-insulator samples, including the unwonted intense P~ band which exhibits a great potential in the optoelectronic application. These results indicate that severe transformation of the interstitial clusters can be manipulated by the implanting dose at suitable annealing temperatures. The high critical temperatures for the photoluminescence intensity growth of the two signatures are well discussed based on the thermal ionization model of free exciton.
基金supported by the National Natural Science Foundation of China(Grant Nos.61275040,60976046,and 61021003)the National Basic Research Program of China(Grant No.2012CB934200)
文摘The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5×10^14cm^-2 to 2×10^15cm^-2 and a subsequent two-step annealing process in a tube furnace.With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density(J0e) and a poorer crystallographic quality. Consistent with this observation, V oc, J sc, and the efficiency of the all-implanted p^+–n–n^+solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5×10^14cm^-2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I–V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers.
文摘Multiconfiguration quantum chemical calculation of geometry and electron properties of Fe2Si18 cluster indicates on the predictable change of spin states as a function of the excitation energy beginning from ground state with the total spin S = 4. The charges on the two Fe atoms are quite different as well as the charge distribution on the surrounding Si atoms. Nevertheless the total dipole moment of the cluster is a monotonically decreasing function of the excitation energy and it reaches practically zero value in the first singlet state in which the cluster represents a new version of a quibit system.
基金supported by the National Basic Research Program of China (Grant Nos.2010CB934104 and 2010CB933800)the National Natural Science Foundation of China (Grant Nos.60606024 and 61076077)
文摘The electromagnetic interaction between Ag nanoparticles on the top of the Si substrate and the incident light has been studied by numerical simulations. It is found that the presence of dielectric layers with different thicknesses leads to the varied resonance wavelength and scattering cross section and consequently the shifted photocurrent response for all wavelengths. These different behaviours are determined by whether the dielectric layer is beyond the domain where the elcetric field of metallic plasmons takes effect, combined with the effect of geometrical optics. It is revealed that for particles of a certain size, an appropriate dielectric thickness is desirable to achieve the best absorption. For a certain thickness of spacer, an appropriate granular size is also desirable. These observations have substantial applications for the optimization of surface plasmon enhanced silicon solar cells.
基金supported by the National Natural Science Foundation of China (Grant Nos 10647006 and 10547007)the Natural Science Foundation of Gansu Province of China (Grant No 3ZS042-B25-023)the Prominent Youth Foundation (Grant No Q200704) of LUT and the Scientific Developmental Foundation of LUT
文摘The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several trends. For any stoichiometric clusters, the lowest energy isomers with an alteration of N and Si atoms are favourable in energy if the numbers of Si and N atoms are large enough to form ... Si N-Si-N... alternative chains. The bond lengths of single Si-N bonds are very close to the corresponding values of the bulk and other SiN clusters. The geometries for N-rich and Si4N4 clusters are planar structures, but three-dimensional structures are favourable in energy for Si-rich clusters. With the increase of m, the isotropic polarizability and average polarizability increase, the total binding energies generally decrease, the HOMO-LUMO gap and vertical ionization potential oscillate with increasing number of valence electrons, and their values with even valence electrons are larger than those with odd valence electrons. The atomic charges, IR and Raman properties are also reported.
文摘The possibility of building of clusters of impurity atoms of Ni in silicon and controlling their parameters is currently investigated in the present research article. Our group develops a special technique for doping, the so-called “low-temperature doping” of semiconductors. This method of doping is based upon the diffusion process which is carried out in stages by gradually increasing temperature ranging from room temperature to the diffusion temperature.