The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ...The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.展开更多
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
The silicon heterojunction(SHJ)solar cell has long been considered as one of the most promising candidates for the next-generation PV market.Transition metal oxides(TMOs)show good carrier selectivity when combined wit...The silicon heterojunction(SHJ)solar cell has long been considered as one of the most promising candidates for the next-generation PV market.Transition metal oxides(TMOs)show good carrier selectivity when combined with c-Si solar cells.This has led to the rapid demonstration of the remarkable potential of TMOs(especially MoO_(x))with high work function to replace the p-type a-Si:H emitting layer.MoO_(x) can induce a strong inversion layer on the interface of n-type c-Si,which is beneficial to the extraction and conduction of holes.In this paper,the radio-frequency(RF)magnetron sputtering is used to deposit MoO_(x) films.The optical,electrical and structural properties of MoO_(x) films are measured and analyzed,with focus on the inherent compositions and work function.Then the MoO_(x) films are applied into SHJ solar cells.When the MoO_(x) works as a buffer layer between ITO/p-a-Si:H interface in the reference SHJ solar cell,a conversion efficiency of 19.1%can be obtained.When the MoOx is used as a hole transport layer(HTL),the device indicates a desirable conversion efficiency of 17.5%.To the best of our knowledge,this current efficiency is the highest one for the MoO_(x) film as HTL by RF sputtering.展开更多
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on...P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.展开更多
In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon o...In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon oxide) by plasma-enhanced chemical vapor deposition method. The influence of the n-μc-SiOx:H emitter thickness on the heterointerface passivation in SHJ solar cells was investi- gated. With increasing thickness, the crystallinity of the emitter as well as its dark conductivity increases. Mean- while, the effective minority carrier lifetime (teff) of the SHJ solar cell precursors at low injection level shows a pronounced increase trend, implying that an improved field effect passivation is introduced as the emitter is deposited. And, an increased μTelf is also observed at entire injection level due to the interfacial chemical passivation improved by the hydrogen diffusion along with the emitter deposition. Based on the analysis on the external quantum effi- ciency of the SHJ solar cells, it can be expected that the high efficient SHJ solar cells could be obtained by improving the heterointerface passivation and optimizing the emitter deposition process.展开更多
A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open...A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell.Here,we present a four-terminal tandem solar cell architecture consisting of a selffiltered planar architecture perovskite top cell and a silicon heterojunction bottom cell.A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device.The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact.The four-terminal tandem solar cell yields an efficiency of 14.8%,with contributions of the top(8.98%)and the bottom cell(5.82%),respectively.We also point out that in terms of optical losses,the intermediate contact of self-filtered tandem architecture is the uppermost problem,which has been addressed in this communication,and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device.展开更多
The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact.For modeling-based opt...The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact.For modeling-based optimization of such contact,knowledge of the molybdenum oxide defect density of states(DOS)is crucial.In this paper,we report a method to extract the defect density through nondestructive optical measures,including the contribution given by small polaron optical transitions.The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations.As part of the study,molybdenum oxide samples have been evaluated after post-deposition thermal treatments.Quantitative results are in agreement with the result of density functional theory showing the presence of a defect band fixed at 1.1 eV below the conduction band edge of the oxide.Moreover,the distribution of defects is affected by post-deposition treatment.展开更多
In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost sol...In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52202276 and 51821002)the China Postdoctoral Science Foundation (Grant No.2022M712300)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJB480010)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
基金Project supported by the National Natural Science Foundation of China(Grant No.62074084)the National Key Research and Development Program of China(Grant No.2018YFB1500402)Key Research and Development Program of Hebei Province,China(Grant No.20314303D).
文摘The silicon heterojunction(SHJ)solar cell has long been considered as one of the most promising candidates for the next-generation PV market.Transition metal oxides(TMOs)show good carrier selectivity when combined with c-Si solar cells.This has led to the rapid demonstration of the remarkable potential of TMOs(especially MoO_(x))with high work function to replace the p-type a-Si:H emitting layer.MoO_(x) can induce a strong inversion layer on the interface of n-type c-Si,which is beneficial to the extraction and conduction of holes.In this paper,the radio-frequency(RF)magnetron sputtering is used to deposit MoO_(x) films.The optical,electrical and structural properties of MoO_(x) films are measured and analyzed,with focus on the inherent compositions and work function.Then the MoO_(x) films are applied into SHJ solar cells.When the MoO_(x) works as a buffer layer between ITO/p-a-Si:H interface in the reference SHJ solar cell,a conversion efficiency of 19.1%can be obtained.When the MoOx is used as a hole transport layer(HTL),the device indicates a desirable conversion efficiency of 17.5%.To the best of our knowledge,this current efficiency is the highest one for the MoO_(x) film as HTL by RF sputtering.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA050301)Scientific Research of Hebei Education Department,China(Grant No.QN2017135)
文摘P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.
文摘In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon oxide) by plasma-enhanced chemical vapor deposition method. The influence of the n-μc-SiOx:H emitter thickness on the heterointerface passivation in SHJ solar cells was investi- gated. With increasing thickness, the crystallinity of the emitter as well as its dark conductivity increases. Mean- while, the effective minority carrier lifetime (teff) of the SHJ solar cell precursors at low injection level shows a pronounced increase trend, implying that an improved field effect passivation is introduced as the emitter is deposited. And, an increased μTelf is also observed at entire injection level due to the interfacial chemical passivation improved by the hydrogen diffusion along with the emitter deposition. Based on the analysis on the external quantum effi- ciency of the SHJ solar cells, it can be expected that the high efficient SHJ solar cells could be obtained by improving the heterointerface passivation and optimizing the emitter deposition process.
基金Project supported by the International Cooperation Projects of the Ministry of Science and Technology(No.2014DFE60170)the National Natural Science Foundation of China(Nos.61474065,61674084)+2 种基金the Tianjin Research Key Program of Application Foundation and Advanced Technology(No.15JCZDJC31300)the Key Project in the Science&Technology Pillar Program of Jiangsu Province(No.BE2014147-3)the 111 Project(No.B16027)
文摘A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell.Here,we present a four-terminal tandem solar cell architecture consisting of a selffiltered planar architecture perovskite top cell and a silicon heterojunction bottom cell.A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device.The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact.The four-terminal tandem solar cell yields an efficiency of 14.8%,with contributions of the top(8.98%)and the bottom cell(5.82%),respectively.We also point out that in terms of optical losses,the intermediate contact of self-filtered tandem architecture is the uppermost problem,which has been addressed in this communication,and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device.
文摘The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact.For modeling-based optimization of such contact,knowledge of the molybdenum oxide defect density of states(DOS)is crucial.In this paper,we report a method to extract the defect density through nondestructive optical measures,including the contribution given by small polaron optical transitions.The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations.As part of the study,molybdenum oxide samples have been evaluated after post-deposition thermal treatments.Quantitative results are in agreement with the result of density functional theory showing the presence of a defect band fixed at 1.1 eV below the conduction band edge of the oxide.Moreover,the distribution of defects is affected by post-deposition treatment.
基金supported by the National Natural Science Foundation of China(Nos.21774015 and 21975027)NSFC-MAECI(No.51861135202).
文摘In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.