期刊文献+
共找到1,144篇文章
< 1 2 58 >
每页显示 20 50 100
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
1
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy micro/nanostructurE Ultraprecision diamond surface texturing Cutting force Chip morphology Structural color
下载PDF
Fabrication of Silicon Crystal-Facet-Dependent Nanostructures by Electron-Beam Lithography
2
作者 杨香 韩伟华 +2 位作者 王颖 张杨 杨富华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1057-1061,共5页
Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This ... Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces. 展开更多
关键词 silicon nanostructure anisotropic wet etching electron-beam lithography
下载PDF
Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance 被引量:3
3
作者 Tian tian Ma Xianghong Liu +3 位作者 Li Sun Yongshan Xu Lingli Zheng Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期43-51,共9页
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ... A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs. 展开更多
关键词 Iron OXIDE micro/nanostructures CARBON TUBES ANODE Coupling
下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications 被引量:1
4
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 silicon anode Energy storage nanostructurE Prelithiation BINDER
下载PDF
Simple Fabrication of Hierarchical Micro/Nanostructure Superhydrophobic Surface with Stable and Superior Anticorrosion Silicon Steel via Laser Marking Treatment 被引量:3
5
作者 FU Jing TANG Mingkai ZHANG Qiaoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期411-417,共7页
To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-sca... To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion. 展开更多
关键词 silicon steel laser marking hierarchical micro/nanostructure superhydrophobic surface corrosion resistance
下载PDF
Anticorrosion Coatings from Poly(Aniline-co-2-Ethylaniline) Micro/Nanostructures 被引量:2
6
作者 XING Cuijuan SONG Xinling +2 位作者 ZHANG Zhiming JIANG Xiaohui YU Liangmin 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第6期1371-1381,共11页
PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing... PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing ammonium persulfate as an oxidant.The results revealed that the poly(aniline-co-2-ethyl aniline)(PANI-EA)copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel,and the corrosion protection efficiency increased with the increase of water repellent property.Poly(2-ethyl aniline)(PEA)showed the largest contact angle(CA=145°)and show the best corrosion protection for the carbon steel(h=87.29%).It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity,low conductivity and low porosity. 展开更多
关键词 POLYANILINE poly(aniline-co-2-ethylaniline)micro/nanostructures CORROSION PROTECTION WETTABILITY
下载PDF
A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding 被引量:7
7
作者 Tianfeng Zhou Yupeng He +7 位作者 Tianxing Wang Zhanchen Zhu Ruzhen Xu Qian Yu Bin Zhao Wenxiang Zhao Peng Liu Xibin Wang 《International Journal of Extreme Manufacturing》 SCIE EI 2021年第4期23-54,共32页
Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding tec... Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance. 展开更多
关键词 precision glass molding mold manufacturing micro/nanostructurE mold material extreme features
下载PDF
Curved surface effect and emission on silicon nanostructures 被引量:1
8
作者 黄伟其 尹君 +6 位作者 周年杰 黄忠梅 苗信建 陈汉琼 苏琴 刘世荣 秦朝建 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期292-298,共7页
The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce loc... The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission. 展开更多
关键词 silicon nanostructures curved surface effect characteristic line localized states
下载PDF
Fabrication of Ordered Micro/Nanostructures Using Probe‑Based Force‑Controlled Micromachining System
9
作者 Yanquan Geng Yuzhang Wang +2 位作者 Jianxiong Cai Jingran Zhang Yongda Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期178-193,共16页
This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influe... This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection. 展开更多
关键词 Ordered micro/nanostructure Probe-based micromachining In-process force-controlled Indentation array micro cutting
下载PDF
Effect of TMS(nanostructured silicon dioxide) on growth of Changbai larch seedlings
10
作者 林宝山 刁绍起 +3 位作者 李春辉 方利军 乔树春 于民 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期138-140,i003,共4页
The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, ... The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, main root length and number of lateral roots were measured every 15 days during growing season from May 30 to Oct. 20. Experimental results showed that TMS treatments greatly promoted seedling growth and improved seedling quality. The treatment by 500 μL·L?1 TMS produced the best result, for which the mean height, root collar diameter, main root length, and the number of lateral roots of seedlings were increased by 42.5%, 30.7%, 14.0%, and 31.6%, respectively, compared to that of the control seedlings. As to seedling quality, grade-I seedling and grade-II seedlings were fifty-fifty, and no grade-III seedlings was found. The treatment by 500 μL·L?1 TMS resulted in the highest chlorophyll concentration. Keywords Changbai Larch - Larix olgensis - Seedling production - Nanostructured silicon dioxide CLC number S143.8 Document code B Foundation item: This study is supported by Jilin Forestry Group Co.Biography: LIN Baoshan (1955-), male, Associate professor at the college of forestry, Beihua University, Jilin City 132011, Jilin Province, P.R China.Responsible editor: Chai Ruihai. 展开更多
关键词 Changbai Larch Larix olgensis Seedling production nanostructured silicon dioxide
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
11
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication micro/nanostructured materials Energy conversion and storage
下载PDF
Superhydrophobic Micro/Nanostructured Copper Mesh with Self-Cleaning Property for E ective Oil/Water Separation 被引量:1
12
作者 Tai-heng Zhang Tao Yan +2 位作者 Guo-qing Zhao Wenjihao Hu Fei-peng Jiao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期635-642,共8页
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom... In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation. 展开更多
关键词 SUPERHYDROPHOBICITY micro/nanostructurE TUNGSTEN TRIOXIDE SELF-CLEANING Oil/water separation
下载PDF
Enhanced Current Transportation in Siliconriched Nitride(SRN)/Silicon-riched Oxide(SRO)Multilayer Nanostructure 被引量:1
13
作者 Yeliao Tao Jun Zheng +3 位作者 Yuhua Zuo Chunlai Xue Buwen Cheng Qiming Wang 《Nano-Micro Letters》 SCIE EI CAS 2012年第4期202-207,共6页
A novel structure of silicon-riched nitride(SRN)/silicon-riched oxide(SRO) is proposed and prepared using RF reactive magnetron co-sputtering. High temperature annealing of SRN/SRO multilayers leads to formation of Si... A novel structure of silicon-riched nitride(SRN)/silicon-riched oxide(SRO) is proposed and prepared using RF reactive magnetron co-sputtering. High temperature annealing of SRN/SRO multilayers leads to formation of Si nanocrystals(NC) from isolating SRN and SRO layers simultaneously, which efficiently improves carrier transport ability compared to conventional SRN/Si_3N_4 counterpart. Micro-Raman scattering analysis reveals that SRN layer has dominating number of denser and smaller Si NCs, while SRO layer has relatively less, sparser and bigger Si NCs, as confirmed by high resolution transmission electron microscopy observation. The substitute SRO layers for Si_3N_4 counterparts significantly increase the amount of Si NCs as well as crystallization ratio in SRN layers; while the average Si NC size can be well controlled by the thickness of SRN layers and the content of N, and hence an obvious stronger absorption in UV region for the novel structure can be observed in absorption spectra. The I-V characteristics show that the current of hybrid SRN/SRO system increases up to 2 orders of magnitude at 1 V and even 5 orders of magnitude at 4 V compared to that of SRN/Si_3N_4 structure. Si NCs in Si Oylayers provide a transport pathway for adjacent Si NCs in Si Nxlayers. The obvious advantage in carrier transportation suggests that SRN/SRO hybrid system could be a promising structure and platform to build Si nanostructured solar cells. 展开更多
关键词 silicon nanostructure Magnetron sputtering Raman Spectroscopy Charge transport
下载PDF
Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High-Performance Lithium-ion Batteries 被引量:2
14
作者 Yaya Wang Zexu Zhao +8 位作者 Jiang Zhong Tao Wang Lei Wang Hanjiao Xu Jinhui Cao Jinhao Li Guanhua Zhang Huilong Fei Jian Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期969-976,共8页
Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current co... Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors. 展开更多
关键词 currentcollectors femtosecondlaserstrategy hierarchical micro/nanostructures high rate performance lithium-ion battery
下载PDF
Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications 被引量:16
15
作者 Yiyuan Zhang Yunlong Jiao +5 位作者 Chuanzong Li Chao Chen Jiawen Li Yanlei Hu Dong Wu Jiaru Chu 《International Journal of Extreme Manufacturing》 2020年第3期42-62,共21页
manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel proc... manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel process,chemical vapor deposition,template method,and self-assembly).These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications,including self-cleaning surfaces,oil-water separation,and fog collection.This review presents the inherent relationship between natural organisms,fabrication methods,micro/nanostructures and their potential applications.Thereafter,we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.Subsequently,we summarize a variety of typical bioinspired designs(e.g.lotus leaf,pitcher plant,rice leaf,butterfly wings,etc)for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology.Based on the principle of interfacial chemistry and geometrical optics,we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW.This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains. 展开更多
关键词 femtosecond laser direct writing multiscale micro/nanostructures extreme fabrication bioinspired applications
下载PDF
Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring 被引量:12
16
作者 Dongshi Zhang Bikas Ranjan +1 位作者 Takuo Tanaka Koji Sugioka 《International Journal of Extreme Manufacturing》 2020年第1期135-154,共20页
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la... In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bubbles with different curvatures.This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications. 展开更多
关键词 hierarchical micro/nanostructures persistent bubble femtosecond laser surface structuring beam refraction fan-shaped microstructure LIPSS
下载PDF
Icephobic performance on the aluminum foil-based micro-/nanostructured surface 被引量:1
17
作者 陈宇 刘桂成 +5 位作者 姜磊 金志永 叶锋 李重基 王磊 王波 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期351-355,共5页
The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophob... The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophobic materials.The simple and easy preparation method has become the focus for superhydrophobic materials.In this paper,we present a program for preparing a rough surface on an aluminum foil,which possesses excellent hydrophobic properties after the treatment with low surface energy materials at high vacuum.The resulting contact angle is larger than 160° and the droplet cannot freeze on the surface above-10 ℃.Meanwhile,the modified aluminum foil with the thickness of less than 100 μm can be used as an ideal flexible applied material for superhydrophobicity/anti-icing. 展开更多
关键词 aluminum foil micro-nanostructurE superhdrophobicity ANTI-ICING FLEXIBILITY
下载PDF
Research and test of the adaptive quadrature demodulation technology for silicon micro-machined gyroscope 被引量:3
18
作者 王玉良 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期118-122,共5页
A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locke... A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future. 展开更多
关键词 silicon micro-machined Gyroscope (SMG) adaptive filtering technology quadrature demodulation Field Programmable Gate Array(FPGA)
下载PDF
Electrochemical behavior of insulin on pretreated carbon black electrode enhanced with silicon carbide nanostructure
19
作者 郭朝中 陈昌国 +1 位作者 ZHENG Jie LUO Zhong-li 《Journal of Chongqing University》 CAS 2013年第3期103-107,共5页
We previously reported the direct electrochemical detection of insulin at bare carbon electrodes. Here a novel modified acetylene carbon black paste electrode(SiC/CB-CPE), based on the outstanding characteristics of s... We previously reported the direct electrochemical detection of insulin at bare carbon electrodes. Here a novel modified acetylene carbon black paste electrode(SiC/CB-CPE), based on the outstanding characteristics of silicon carbide nanostructure,was developed for the electrooxidation of insulin in alkaline solution and it was characterized by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) in 5 mmol/L Fe(CN)63-/4- solution. It is found that silicon carbide nanostructure doped into the CB-CPE greatly facilitates the redox electrochemistry of Fe(CN)63-/4- probe and the electrochemical oxidation of insulin. The electrooxidation of insulin is a one-electron and one-proton reaction and an irreversible adsorption-controlled electrode process. The anodic oxidation current increases linearly with the concentration of insulin from 1×10-7mol/L to1.2×10-6mol/L in 0.1 mol/L Na2CO3-NaHCO3 buffer solution(pH 10.0) and the detection limit was 50 nmol/L. In addition, the SiC/CB-CPE shows good sensitivity, reproducibility, renewability and capacity of resisting disturbance. 展开更多
关键词 silicon carbide nanostructure ELECTROOXIDATION INSULIN carbon black carbon paste electrode
下载PDF
Silicon Isotope Geochemistry of Micro-Fine Disseminated Gold Deposits in SW Guizhou and NW Guangxi,China 被引量:1
20
作者 刘显凡 倪师军 +2 位作者 卢秋霞 金景福 朱赖民 《Chinese Journal Of Geochemistry》 EI CAS 1998年第3期249-257,共9页
Quartz was studied with respect to its silicon isotopic composition and cathodoluminescence in micro-fine disseminated gold deposits in SW Guizhou and NW Guangxi. The resultsshowed that quartz in wall rocks, ores and ... Quartz was studied with respect to its silicon isotopic composition and cathodoluminescence in micro-fine disseminated gold deposits in SW Guizhou and NW Guangxi. The resultsshowed that quartz in wall rocks, ores and that in association with hydrothermal silicificationare distinctive in silicon isotopes and cathodoluminescence characters. Quartz in association withprimary silicification is non-luminescent while that in wall rocks and associated with secondarysilicification exhibits striking luminescence. Based on the dynamic fractionation of silicon isotopes, it is suggested that the mineralization was accompanied by rapid transport of a primarysiliceous fluid along the major deep fault system into subordinate faults before ore componentsdeposited in favorable strata via penetration and metasomatism. Therefore, a deep origin is implicit for gold deposits of this type. 展开更多
关键词 硅同位素 阴极射线磷光 同位素示踪 中国 广西 贵州 金矿床 成矿作用
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部