期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array 被引量:2
1
作者 姚志涛 孙新瑞 +1 位作者 许海军 李新建 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3108-3113,共6页
Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found ... Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of -10 μm. The film resistivity of ZnO/SiNPA is measured to be -8.9Ωcm by the standard four probe method. The lengthwise Ⅰ-Ⅴ curve of ZnO/Si-NPA heterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages. 展开更多
关键词 silicon nanoporous pillar array (Si-NPA) ZnO/Si-NPA heterostructure thermionic process
下载PDF
Time-Resolved Photoluminescence Study of Silicon Nanoporous Pillar Array
2
作者 王小波 闫玲玲 +1 位作者 李勇 李新建 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期136-139,共4页
A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced p... A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced physical properties. This makes the in-depth understanding of the photoluminescence (PL) of Si-NPA crucial for both scientific research and practical applications. In this work, the PL properties of Si-NPA are studied by measuring both the steady-state and time-resolved PL spectrum. Based on the experimental data, the three PL bands of Si-NPA, i.e., the ultraviolet band, the purple-blue plateau and the red band are assigned to the oxygen-excess defects in Si oxide or silanol groups at the surface of Si nanocrystallites (nc-Si), oxygen deficiency defects in Si oxide, and band-to-band transition of nc-Si under the frame of quantum confinement combining with the surface states like Si=O and Si-O^i bonds at the surface of nc-Si, respectively. These results may provide some novel insight into the PL process of Si-NPA and may be helpful for clarifying the PL mechanism. 展开更多
关键词 Time-Resolved Photoluminescence Study of silicon nanoporous pillar array NPA SI
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部