期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
Boron-Silicon Thin Film Formation Using a Slim Vertical Chemical Vapor Deposition Reactor
1
作者 Yuki Kamochi Atsuhiro Motomiya +3 位作者 Hitoshi Habuka Yuuki Ishida Shin-Ichi Ikeda Shiro Hara 《Advances in Chemical Engineering and Science》 CAS 2023年第1期7-18,共12页
A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reacto... A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations. 展开更多
关键词 chemical vapor deposition Boron-silicon Film Boron Trichloride DICHLOROSILANE
下载PDF
<100> Textured Diamond Film on Silicon Grown by Hot Filament Chemical Vapor Deposition
2
作者 Xuanxiong ZHANG Tiansheng SHI and Xikang ZHANG (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy,Chinese Academy of Sciences, Shanghai, 200050, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期426-428,共3页
The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thic... The <100> textured growth of diamond film on HF eroded silicon wafer has been studied by HFCVD. The evolution of grain size and sudece morphology vs deposition time is presented and the <100> textured thick diamond film (80μm) with smooth surface, desirable for practical application in many fields is obtained 展开更多
关键词 Textured Diamond Film on silicon Grown by Hot Filament chemical vapor deposition OO
下载PDF
Numerical simulation of chemical vapor deposition reaction in polysilicon reduction furnace 被引量:1
3
作者 夏小霞 王志奇 刘斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期44-51,共8页
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ... Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm. 展开更多
关键词 多晶硅 沉积反应 化学气相 还原炉 数值模拟 炉内 化学反应过程 摩尔分数
下载PDF
Chemical Vapor Deposition Mechanism of Copper Films on Silicon Substrates 被引量:1
4
作者 Song Wu Bo Tao Yong-ping Shen Qi Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期248-252,共5页
一个万用的金属器官的化学蒸汽免职(MOCVD ) 系统被设计并且构造。铜电影在硅(100 ) 上被扔由用 Cu (hfac )<SUB>2</SUB> 的化学蒸汽免职(CVD ) 的底层作为一位先锋。由 Cu (hfac )<SUB>2</SUB> 的 H <SUB&g... 一个万用的金属器官的化学蒸汽免职(MOCVD ) 系统被设计并且构造。铜电影在硅(100 ) 上被扔由用 Cu (hfac )<SUB>2</SUB> 的化学蒸汽免职(CVD ) 的底层作为一位先锋。由 Cu (hfac )<SUB>2</SUB> 的 H <SUB>2</SUB> 减小的硅底层上的 Cu 原子核的生长被原子力量显微镜学和扫描电子显微镜学学习。Cu 原子核的生长模式是开始 Volmer 网模式(岛) ,然后到 Stranski-Rastanov 模式(加岛的 layer-by-layer ) 的变换。硅(100 ) 上的 Cu 成核的机制底层被 X 光检查光电子进一步调查光谱学。从 Cu2p, O1s, F1s, Si2p 模式,观察 C=O,哦并且 CF <SUB>3</SUB>/CF<SUB>2</SUB> 应该属于 Cu (hfac )<SUB>2</SUB> 的热分离形成的 Cu (hfac ) 。H <SUB>2</SUB> 在表面上与 hfac 反应,生产哦。与它的累积,哦与 hfac 反应,形成 HO-hfac,并且同时,使放出铜氧化物被减少,并且因此,在 Cu (hafc )<SUB>2</SUB> 之间的氧化还原作用反应和 H <SUB>2</SUB> 发生。 展开更多
关键词 有机金属化学气相沉积 铜薄膜 单晶硅(100) 沉积反应机理
下载PDF
Room Temperature and Reduced Pressure Chemical Vapor Deposition of Silicon Carbide on Various Materials Surface
5
作者 Hitoshi Habuka Asumi Hirooka +1 位作者 Kohei Shioda Masaki Tsuji 《Advances in Chemical Engineering and Science》 2014年第4期389-395,共7页
At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma... At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma etcher, without a substrate transfer operation. By this process, the several-nanometer-thick amorphous thin film containing silicon-carbon bonds was obtained on various substrates, such as semiconductor silicon, aluminum and stainless steel. It is concluded that the room temperature silicon carbide thin film formation is possible even at significantly low pressure, when the substrate surface is reactive. 展开更多
关键词 silicon CARBIDE Monomethylsilane chemical vapor deposition ROOM Temperature REDUCE Pressure
下载PDF
Quartz Crystal Microbalances for Evaluating Gas Motion Differences between Dichlorosilane and Trichlorosilane in Ambient Hydrogen in a Slim Vertical Cold Wall Chemical Vapor Deposition Reactor 被引量:1
6
作者 Mana Otani Toshinori Takahashi +3 位作者 Hitoshi Habuka Yuuki Ishida Shin-Ichi Ikeda Shiro Hara 《Advances in Chemical Engineering and Science》 2020年第3期190-200,共11页
A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. Thi... A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the </span><span style="font-family:Verdana;">inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties.</span><span style="font-family:Verdana;"> Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber. 展开更多
关键词 Minimal Fab chemical vapor deposition Reactor Quartz Crystal Microbalance silicon Epitaxial Growth TRICHLOROSILANE DICHLOROSILANE
下载PDF
Characteristics and Electrical Properties of SiNx:H Films Fabricated by Plasma-Enhanced Chemical Vapor Deposition 被引量:2
7
作者 凌绪玉 《Journal of Electronic Science and Technology of China》 2005年第3期264-267,共4页
SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR... SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved. 展开更多
关键词 silicon nitride films electrical properties I-V measurement plasma enhanced chemical vapor deposition
下载PDF
Thermodynamic Analysis of Chemical Vapor Deposition of BCl_3-NH_3-SiCl_4-H_2-Ar System
8
作者 李赞 CHENG Laifei +1 位作者 刘永胜 YE Fang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期951-958,共8页
The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reacta... The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating. 展开更多
关键词 boron trichloride-ammonia-silicon tetrachloride-hydrogen-argon system thermodynamic phase stability area diagram chemical vapor deposition
下载PDF
Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition
9
作者 李志 何剑 +3 位作者 李伟 蔡海洪 龚宇光 蒋亚东 《Journal of Central South University》 SCIE EI CAS 2010年第6期1163-1171,共9页
The structural evolution and optical characterization of hydrogenated silicon(Si:H) thin films obtained by conventional radio frequency(RF) plasma enhanced chemical vapor deposition(PECVD) through decomposition of sil... The structural evolution and optical characterization of hydrogenated silicon(Si:H) thin films obtained by conventional radio frequency(RF) plasma enhanced chemical vapor deposition(PECVD) through decomposition of silane diluted with argon were studied by X-ray diffractometry(XRD),Fourier transform infrared(FTIR) spectroscopy,Raman spectroscopy,transmission electron microscopy(TEM),and ultraviolet and visible(UV-vis) spectroscopy,respectively.The influence of argon dilution on the optical properties of the thin films was also studied.It is found that argon as dilution gas plays a significant role in the growth of nano-crystal grains and amorphous network in Si:H thin films.The structural evolution of the thin films with different argon dilution ratios is observed and it is suggested that argon plasma leads to the nanocrystallization in the thin films during the deposition process.The nanocrystallization initiating at a relatively low dilution ratio is also observed.With the increase of argon portion in the mixed precursor gases,nano-crystal grains in the thin films evolve regularly.The structural evolution is explained by a proposed model based on the energy exchange between the argon plasma constituted with Ar* and Ar+ radicals and the growth regions of the thin films.It is observed that both the absorption of UV-vis light and the optical gap decrease with the increase of dilution ratio. 展开更多
关键词 NANOCRYSTALLIZATION 血浆提高了化学蒸汽免职(PECVD ) hydrogenated 硅(Si : H )
下载PDF
Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating 被引量:4
10
作者 Chen Zhao Bing Deng +4 位作者 Guanchu Chen Bo Lei Hong Hua Hailin Peng Zhimin Yan 《Nano Research》 SCIE EI CAS CSCD 2016年第4期963-973,共11页
New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study we develope... New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commerdal flexible transparent ethylene vinyl acetate/polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to -100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials. 展开更多
关键词 graphene silver nanowires antimicrobial chemical vapor deposition (CVD) electrochemical corrosion
原文传递
Friction and Cutting Properties of Hot-Filament Chemical Vapor Deposition Micro-and Fine-grained Diamond Coated Silicon Nitride Inserts 被引量:4
11
作者 杨国栋 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期519-525,共7页
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper... The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one. 展开更多
关键词 silicon nitride hot-filament chemical vapor deposition(HFCVD) friction and wear glass fiber reinforced plastics(GFRP)
原文传递
Broadband photodetector of high quality SbS nanowire grown by chemical vapor deposition 被引量:3
12
作者 Kun Ye Bochong Wang +7 位作者 Anmin Nie Kun Zhai Fusheng Wen Congpu Mu Zhisheng Zhao Jianyong Xiang Yongjun Tian Zhongyuan Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期14-20,共7页
Low dimensional semiconductors can be used for various electronic and optoelectronic devices because of their unique structure and property.In this work,one-dimensional Sb2 S3 nanowires(NWs)with high crystallinity wer... Low dimensional semiconductors can be used for various electronic and optoelectronic devices because of their unique structure and property.In this work,one-dimensional Sb2 S3 nanowires(NWs)with high crystallinity were grown via chemical vapor deposition(CVD)technique on SiO2/Si substrates.The Sb2 S3 NWs exhibited needle-like structures with inclined cross-sections.The lengths of Sb2S3 nanowires changed from 7 to 13μm.The photodetection properties of Sb2 S3 nanowires were comprehensively and systematically characterized.The Sb2S3 photodetectors show a broadband photoresponse ranging from ultraviolet(360 nm)to near-infrared(785 nm).An excellent specific detectivity of 2.1×10^(14)Jones,high external quantum efficiency of 1.5×10^(4)%,sensitivity of 2.2×10^(4)cm^(2)W^(-1)and short response time of less than 100 ms was achieved for the Sb2 S3 NW photodetectors.Moreover,the Sb2S3 NWs showed outstanding switch cycling stability that was beneficial to the practical applications.The high-quality Sb2S3 nanowires fabricated by CVD have great application potential in semiconductor and optoelectronic fields. 展开更多
关键词 Sb2S3 nanowires PHOTODETECTOR chemical vapor deposition
原文传递
Effect of hydrogen on low temperature epitaxial growth of polycrystalline silicon by hot wire chemical vapor deposition
13
作者 曹勇 张海龙 +2 位作者 刘丰珍 朱美芳 董刚强 《Journal of Semiconductors》 EI CAS CSCD 2015年第2期29-33,共5页
Polycrystalline silicon (poly-Si) films were prepared by hot-wire chemical vapor deposition (HWCVD) at a low substrate temperature of 525 ℃. The influence of hydrogen on the epitaxial growth of ploy-Si films was ... Polycrystalline silicon (poly-Si) films were prepared by hot-wire chemical vapor deposition (HWCVD) at a low substrate temperature of 525 ℃. The influence of hydrogen on the epitaxial growth of ploy-Si films was investigated. Raman spectra show that the poly-Si films are fully crystallized at 525 ℃ with a different hydrogen dilution ratio (50%-91.7%). X-ray diffraction, grazing incidence X-ray diffraction and SEM images show that the poly-Si thin films present (100) preferred orientation on (100) c-Si substrate in the high hydrogen dilution condition. The P-type poly-Si film prepared with a hydrogen dilution ratio of 91.7% shows a hall mobility of 8.78 cm2/(V-s) with a carrier concentration of 1.3 × 10^20 cm^-3, which indicates that the epitaxial poly-Si film prepared by HWCVD has the possibility to be used in photovoltaic and TFT devices. 展开更多
关键词 polycrystalline silicon hot-wire chemical vapor deposition low temperature epitaxial growth
原文传递
Kinetically-Induced Hexagonality in Chemically Grown Silicon Nanowires 被引量:2
14
作者 Xiaohua Liu Dunwei Wang 《Nano Research》 SCIE EI CSCD 2009年第7期575-582,共8页
Various silicon crystal structures with different atomic arrangements from that of diamond have been observed in chemically synthesized nanowires.The structures are typified by mixed stacking mismatches of closely pac... Various silicon crystal structures with different atomic arrangements from that of diamond have been observed in chemically synthesized nanowires.The structures are typified by mixed stacking mismatches of closely packed Si dimers.Instead of viewing them as defects,we define the concept of hexagonality and describe these structures as Si polymorphs.The small transverse dimensions of a nanowire make this approach meaningful.Unique among the polymorphs are cubic symmetry diamond and hexagonal symmetry wurtzite structures.Electron diffraction studies conducted with Au as an internal reference unambiguously confirm the existence of the hexagonal symmetry Si nanowires.Cohesive energy calculations suggest that the wurtzite polymorph is the least stable and the diamond polymorph is the most stable.Cohesive energies of intermediate polymorphs follow a linear trend with respect to their structural hexagonality.We identify the driving force in the polymorph formations as the growth kinetics.Fast longitudinal elongation during the growth freezes stacking mismatches and thus leads to a variety of Si polymorphs.The results are expected to shed new light on the importance of growth kinetics in nanomaterial syntheses and may open up ways to produce structures that are uncommon in bulk materials. 展开更多
关键词 silicon nanowires hexagonality POLYTYPES cohesive energy chemical vapor deposition KINETICS
原文传递
Self-organization of various“phase-separated”nanostructures in a single chemical vapor deposition
15
作者 Jinmei Wang Dongyue Xie +12 位作者 Zhen Li Xiaohang Zhang Xing Sun Amanda L.Coughlin Thomas Ruch Qiang Chen Yaroslav Losovyj Seunghun Lee Heshan Yu Haidong Zhou Haiyan Wang Jian Wang Shixiong Zhang 《Nano Research》 SCIE EI CAS CSCD 2020年第6期1723-1732,共10页
Chemical vapor deposition(CVD)is one of the most versatile techniques for the controlled synthesis of functional nanomaterials.When multiple precursors are induced,the CVD process often gives rise to the growth of dop... Chemical vapor deposition(CVD)is one of the most versatile techniques for the controlled synthesis of functional nanomaterials.When multiple precursors are induced,the CVD process often gives rise to the growth of doped or alloy compounds.In this work,we demonstrate the self-assembly of a variety of‘phase-separated’functional nanostructures from a single CVD in the presence of various precursors.In specific,with silicon substrate and powder of Mn and SnTe as precursors,we achieved self-organized nanostructures including Si/SiOx core-shell nanowire heterostructures both with and without embedded manganese silicide particles,Mn11Si19 nanowires,and SnTe nanoplates.The Si/SiOx core-shell nanowires embedded with manganese silicide particles were grown along the<111>direction of the crystalline Si via an Au-catalyzed vapor-liquid-solid process,in which the Si and Mn vapors were supplied from the heated silicon substrates and Mn powder,respectively.In contrast,direct vapor-solid deposition led to particle-free<110>-oriented Si/SiOx core-shell nanowires and<100>-oriented Mn11Si19 nanowires,a promising thermoelectric material.No Sn or Te impurities were detected in these nanostructures down to the experimental limit.Topological crystalline insulator SnTe nanoplates with dominant{100}and{111}facets were found to be free of Mn(and Si)impurities,although nanoparticles and nanowires containing Mn were found in the vicinity of the nanoplates.While multiple-channel transport was observed in the SnTe nanoplates,it may not be related to the topological surface states due to surface oxidation.Finally,we carried out thermodynamic analysis and density functional theory calculations to understand the‘phase-separation’phenomenon and further discuss general approaches to grow phase-pure samples when the precursors contain residual impurities. 展开更多
关键词 nanomaterials synthesis silicon nanowires topological crystalline insulators phase separation chemical vapor deposition
原文传递
High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD) 被引量:1
16
作者 ZHOU BingQing ZHU MeiFang +4 位作者 LIU FengZhen LIU JinLong ZHOU YuQin LI GuoHua DING Kun 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第4期371-377,共7页
Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate ... Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s. 展开更多
关键词 RADIO-FREQUENCY PLASMA enhanced chemical vapor deposition (rf-PECVD) MICROCRYSTALLINE silicon film high rate deposition
原文传递
Preparation of ZrC-SiC composite coatings by chemical vapor deposition and study of co-deposition mechanism
17
作者 Qiaomu Liu Jia Liu Xingang Luan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2942-2949,共8页
In this work, the Zr C-SiC composite coatings were co-deposited by chemical vapor deposition(CVD)using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were ... In this work, the Zr C-SiC composite coatings were co-deposited by chemical vapor deposition(CVD)using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250℃, the Zr C-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400℃, the Zr C-SiC co-deposition was controlled by the mass transport process. 展开更多
关键词 chemical vapor deposition(CVD) Zirconium carbide silicon carbide Composite coatings Co-deposition mechanism
原文传递
Multi-time scale photoelectric behavior in facile fabricated transparent and flexible silicon nanowires aerogel membrane
18
作者 Jin Yang Jingbo He +3 位作者 Xiaobin Zou Bo Sun Yong Sun Chengxin Wang 《Nano Research》 SCIE EI CSCD 2022年第2期1609-1615,共7页
In recent years,transparent and flexible materials have been widely pursued in electronics and optoelectronics fields for usage as planar electrodes,energy conversion components and sensing units.As the most widely ap... In recent years,transparent and flexible materials have been widely pursued in electronics and optoelectronics fields for usage as planar electrodes,energy conversion components and sensing units.As the most widely applied semiconductor material,the related progress in silicon is of great significance although with large difficulty.Herein,we report a one-step method to achieve flexible and transparent silicon nanowires aerogel membrane.A competitive carrier kinetics involving interfacial trapped carriers and the valence electrons transition is demonstrated,according to the photoelectric performance of a sandwiched graphene/silicon nanowires membrane/AI device,i.e.,rapidly positive photoresponse dominated by laser excited^ee-carriers generation(〜500 ms)and subsequent slow negative photocurrent evolution due to laser heating involved multi-levels process(>10 s).These results contribute to fabrication of silicon nanowire self-assembly structures and also the exploration of their optoelectrical properties in flexible and transparent devices. 展开更多
关键词 silicon nanowire chemical vapor deposition transparent and flexible nanowires membrane photoelectric property
原文传递
Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates 被引量:5
19
作者 李梦轲 力虎林 +1 位作者 陆梅 王成伟 《Science China Chemistry》 SCIE EI CAS 2002年第4期435-444,共10页
The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiN... The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (/-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can 展开更多
关键词 carbon NANOTUBE silicon nanowirE COMPOSITE structure arrays chemical vapor deposition POROUS anodic aluminum oxide template.
原文传递
Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires 被引量:2
20
作者 Pinyun Ren Xiaoli Zhu +8 位作者 Jinyun Han Jinyou Xu Liang Ma Honglai Li Xiujuan Zhuang Hong Zhou Qinglin Zhang Minggang Xia Anlian Pan 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期301-306,共6页
In this work, we synthesized high-quality In As nanowires by a convenient chemical vapor deposition method,and developed a simple laser heating method to measure the thermal conductivity of a single In As nanowire in ... In this work, we synthesized high-quality In As nanowires by a convenient chemical vapor deposition method,and developed a simple laser heating method to measure the thermal conductivity of a single In As nanowire in air. During the measurement, a focused laser was used to heat one end of a freely suspended nanowire, with its other end embedded into a carbon conductive adhesive. In order to obtain the thermal conductivity of In As nanowires, the heat loss in the heat transfer process was estimated, which includes the heat loss through air conduction, the heat convection, and the radiation loss. The absorption ratio of the laser power in the In As nanowire was calculated. The result shows that the thermal conductivity of In As nanowires monotonically increases from 6.4 W m-1K-1to 10.5 W m-1K-1with diameters increasing from 100 nm to 190 nm, which is ascribed to the enhanced phonon-boundary scattering. 展开更多
关键词 InAs nanowires chemical vapor deposition Thermal conductivity Phonon-boundary scattering
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部