The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatur...The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatures (1550℃, 1650℃ and 1750℃) with a heating rate of 10℃/min and a holding time of 2 h. The nanodispersed nitrides (NDN) were produced by electric-arc plasma synthesis and characterized. The ceramic composites obtained with nanoparticles of 1wt% to 5wt% TiN and 20wt% Si3N4 were characterized by scanning electron microscopy (SEM), atom force microscopy (AFM) and energy-dispersive spectrometry (EDX). The effect of the addition of nanodispersed powders on the mechanical properties and microstructure of Si3N4 ceramics was investigated.展开更多
Cubic silicon nitride(-Si_(3)N_(4))is superhard and one of the hardest materials after diamond and cubic boron nitride(cBN),but has higher thermal stability in an oxidizing environment than diamond,making it a competi...Cubic silicon nitride(-Si_(3)N_(4))is superhard and one of the hardest materials after diamond and cubic boron nitride(cBN),but has higher thermal stability in an oxidizing environment than diamond,making it a competitive candidate for technological applications in harsh conditions(e.g.,drill head and abrasives).Here,we report the high-pressure synthesis and characterization of the structural and mechanical properties of a γ-Si_(3)N_(4)/Hf_(3)N_(4) ceramic nanocomposite derived from single-phase amorphous silicon(Si)-hafnium(Hf)-nitrogen(N)precursor.The synthesis of the-Si_(3)N_(4)/Hf_(3)N_(4) nanocomposite is performed at~20 GPa and ca.1500 ℃ in a large volume multi anvil press.The structural evolution of the amorphous precursor and its crystallization to-Si_(3)N_(4)/Hf_(3)N_(4) nanocomposites under high pressures is assessed by the in situ synchrotron energy-dispersive X-ray diffraction(ED-XRD)measurements at~19.5 GPa in the temperature range of ca.1000-1900℃.The fracture toughness(K_(IC))of the two-phase nanocomposite amounts~6/6.9 MPa·m^(1/2) and is about 2 times that of single-phaseγ-Si_(3)N_(4),while its hardness of ca.30 GPa remains high.This work provides a reliable and feasible route for the synthesis of advanced hard and tough-Si_(3)N_(4)-based nanocomposites with excellent thermal stabililty.展开更多
文摘The synthesis of ceramics based on silicon nitride using nanopowders of TiN and Si3N4 as additives was studied. The ceramic compositions were pressurelessly sintered under ni- trogen atmosphere at different temperatures (1550℃, 1650℃ and 1750℃) with a heating rate of 10℃/min and a holding time of 2 h. The nanodispersed nitrides (NDN) were produced by electric-arc plasma synthesis and characterized. The ceramic composites obtained with nanoparticles of 1wt% to 5wt% TiN and 20wt% Si3N4 were characterized by scanning electron microscopy (SEM), atom force microscopy (AFM) and energy-dispersive spectrometry (EDX). The effect of the addition of nanodispersed powders on the mechanical properties and microstructure of Si3N4 ceramics was investigated.
基金Part of this research was carried out at PETRA III LVP at beamline P61B(beamtime I-20200434)and P02.1Shrikant Bhat and Robert Farla acknowedge the support from the Federal Ministry of Education and Research,Germany(BMBF,Nos.05K16WC2 and 05K13WC2)+2 种基金Wei Li and Leonore Wiehl also acknowledge the travel support from DESY.Zhaoju Yu thanks the National Natural Science Foundation of China(Nos.51872246 and 52061135102)for financial supportMarc Widenmeyer and Anke Weidenkaff are grateful for the financial support by the German Ministry of Education and Research(No.03SF0618B)Wei Li acknowledges the financial support from China Scholarship Council(No.201907040060).
文摘Cubic silicon nitride(-Si_(3)N_(4))is superhard and one of the hardest materials after diamond and cubic boron nitride(cBN),but has higher thermal stability in an oxidizing environment than diamond,making it a competitive candidate for technological applications in harsh conditions(e.g.,drill head and abrasives).Here,we report the high-pressure synthesis and characterization of the structural and mechanical properties of a γ-Si_(3)N_(4)/Hf_(3)N_(4) ceramic nanocomposite derived from single-phase amorphous silicon(Si)-hafnium(Hf)-nitrogen(N)precursor.The synthesis of the-Si_(3)N_(4)/Hf_(3)N_(4) nanocomposite is performed at~20 GPa and ca.1500 ℃ in a large volume multi anvil press.The structural evolution of the amorphous precursor and its crystallization to-Si_(3)N_(4)/Hf_(3)N_(4) nanocomposites under high pressures is assessed by the in situ synchrotron energy-dispersive X-ray diffraction(ED-XRD)measurements at~19.5 GPa in the temperature range of ca.1000-1900℃.The fracture toughness(K_(IC))of the two-phase nanocomposite amounts~6/6.9 MPa·m^(1/2) and is about 2 times that of single-phaseγ-Si_(3)N_(4),while its hardness of ca.30 GPa remains high.This work provides a reliable and feasible route for the synthesis of advanced hard and tough-Si_(3)N_(4)-based nanocomposites with excellent thermal stabililty.